Arabic Poem Generation Incorporating Deep Learning and Phonetic CNNsubword Embedding Models

Sameerah Talafha, Banafsheh Rekabdar
{"title":"Arabic Poem Generation Incorporating Deep Learning and Phonetic CNNsubword Embedding Models","authors":"Sameerah Talafha, Banafsheh Rekabdar","doi":"10.35708/tai1868-126246","DOIUrl":null,"url":null,"abstract":"Arabic poetry generation is a very challenging task since the linguistic structure of the Arabic language is considered a severe challenge for many researchers and developers in the Natural Language Processing (NLP) field. In this paper, we propose a poetry generation model with extended phonetic and semantic embeddings (Phonetic CNNsubword embeddings). We show that Phonetic CNNsubword embeddings have an\neffective contribution to the overall model performance compared to FastTextsubword embeddings. Our poetry generation model consists of a two-stage approach: (1.) generating the first verse which explicitly incorporates the theme related phrase, (2.) other verses generation with the proposed Hierarchy-Attention Sequence-to-Sequence model (HAS2S), which adequately capture word, phrase, and verse information between contexts. A comprehensive human evaluation confirms that the poems generated by our model outperform the base models in criteria such as Meaning, Coherence, Fluency, and Poeticness. Extensive quantitative experiments using Bi-Lingual Evaluation Understudy (BLEU) scores also demonstrate significant improvements over strong baselines.","PeriodicalId":292418,"journal":{"name":"International Journal of Robotic Computing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35708/tai1868-126246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Arabic poetry generation is a very challenging task since the linguistic structure of the Arabic language is considered a severe challenge for many researchers and developers in the Natural Language Processing (NLP) field. In this paper, we propose a poetry generation model with extended phonetic and semantic embeddings (Phonetic CNNsubword embeddings). We show that Phonetic CNNsubword embeddings have an effective contribution to the overall model performance compared to FastTextsubword embeddings. Our poetry generation model consists of a two-stage approach: (1.) generating the first verse which explicitly incorporates the theme related phrase, (2.) other verses generation with the proposed Hierarchy-Attention Sequence-to-Sequence model (HAS2S), which adequately capture word, phrase, and verse information between contexts. A comprehensive human evaluation confirms that the poems generated by our model outperform the base models in criteria such as Meaning, Coherence, Fluency, and Poeticness. Extensive quantitative experiments using Bi-Lingual Evaluation Understudy (BLEU) scores also demonstrate significant improvements over strong baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合深度学习和语音cnn子词嵌入模型的阿拉伯语诗歌生成
阿拉伯语诗歌的生成是一项非常具有挑战性的任务,因为阿拉伯语的语言结构对许多自然语言处理(NLP)领域的研究人员和开发人员来说是一个严峻的挑战。在本文中,我们提出了一个扩展语音和语义嵌入(语音cnn子词嵌入)的诗歌生成模型。我们表明,与FastTextsubword嵌入相比,语音cnn子词嵌入对整体模型性能有有效的贡献。我们的诗歌生成模型包括两个阶段的方法:(1)生成明确包含主题相关短语的第一首诗,(2)使用提出的层次-注意序列到序列模型(HAS2S)生成其他诗歌,该模型可以充分捕获上下文之间的单词、短语和诗歌信息。一项全面的人类评估证实,我们的模型生成的诗歌在意义、连贯性、流畅性和诗意等标准上优于基本模型。使用双语评估替补(BLEU)分数进行的大量定量实验也表明,在强大的基线上有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DQN as an alternative to Market-based approaches for Multi-Robot processing Task Allocation (MRpTA) View Planning for Robotic Inspection of Tolerances Through Visual Tracking of Manual Surface Finishing Operations Bootstrapping MDE Development from ROS Manual Code Towards Autonomous Estimation of Lightweight Object's Mass by a Humanoid Robot during a Precision Grip with Soft Tactile Sensors Particle Filters vs Hidden Markov Models for Prosthetic Robot Hand Grasp Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1