SUpervised HIerarchical CLUSTering (SUHICLUST) for nonlinear system identification

Benjamin Hartmann, O. Nelles, I. Škrjanc, A. Sodja
{"title":"SUpervised HIerarchical CLUSTering (SUHICLUST) for nonlinear system identification","authors":"Benjamin Hartmann, O. Nelles, I. Škrjanc, A. Sodja","doi":"10.1109/CICA.2009.4982781","DOIUrl":null,"url":null,"abstract":"In this paper the new algorithm SUHICLUST (SUpervised HIerarchical CLUSTering) is presented. It unifies the strengths of the supervised, incremental construction scheme LOLIMOT with the advantages of product space clustering. The result of this fusion is a powerful structure identification algorithm that enables approximation of processes with axes-oblique partitioning, high flexible validity functions and local polynomial models. The theoretical comparison with LOLIMOT and product space clustering and a demonstration example underline the usefulness of SUHICLUST.","PeriodicalId":383751,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Control and Automation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2009.4982781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper the new algorithm SUHICLUST (SUpervised HIerarchical CLUSTering) is presented. It unifies the strengths of the supervised, incremental construction scheme LOLIMOT with the advantages of product space clustering. The result of this fusion is a powerful structure identification algorithm that enables approximation of processes with axes-oblique partitioning, high flexible validity functions and local polynomial models. The theoretical comparison with LOLIMOT and product space clustering and a demonstration example underline the usefulness of SUHICLUST.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性系统辨识的监督层次聚类
本文提出了一种新的监督分层聚类算法。它结合了监督式增量施工方案LOLIMOT的优点和产品空间聚类的优点。这种融合的结果是一种强大的结构识别算法,它可以用轴-斜分割、高灵活的有效性函数和局部多项式模型来逼近过程。通过与LOLIMOT和产品空间聚类的理论比较和实例验证了SUHICLUST的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of online soft sensors based on combined adaptive PCA and RBF neural networks Effect of weighting parameters on dynamical behavior of Hopfield neural networks with logistic map activation functions Probabilistic planning integrated in a multi-level dependability concept for mechatronic systems Modeling and control of a nonholonomic Wheeled Mobile Robot with wheel slip dynamics Training set generation using fuzzy logic and dynamic chromosome based Genetic Algorithms for plant identifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1