{"title":"Automatic identification of electrical appliances using smart plugs","authors":"A. Ridi, Christophe Gisler, J. Hennebert","doi":"10.1109/WOSSPA.2013.6602380","DOIUrl":null,"url":null,"abstract":"We report on the evaluation of signal processing and classification algorithms to automatically recognize electric appliances. The system is based on low-cost smart-plugs measuring periodically the electricity values and producing time series of measurements that are specific to the appliance consumptions. In a similar way as for biometric applications, such electric signatures can be used to identify the type of appliance in use. In this paper, we propose to use dynamic features based on time derivative and time second derivative features and we compare different classification algorithms including K-Nearest Neighbor and Gaussian Mixture Models. We use the recently recorded electric signature database ACS-Fl and its intersession protocol to evaluate our algorithm propositions. The best combination of features and classifiers shows 93.6% accuracy.","PeriodicalId":417940,"journal":{"name":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2013.6602380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
We report on the evaluation of signal processing and classification algorithms to automatically recognize electric appliances. The system is based on low-cost smart-plugs measuring periodically the electricity values and producing time series of measurements that are specific to the appliance consumptions. In a similar way as for biometric applications, such electric signatures can be used to identify the type of appliance in use. In this paper, we propose to use dynamic features based on time derivative and time second derivative features and we compare different classification algorithms including K-Nearest Neighbor and Gaussian Mixture Models. We use the recently recorded electric signature database ACS-Fl and its intersession protocol to evaluate our algorithm propositions. The best combination of features and classifiers shows 93.6% accuracy.