Online CP Decomposition for Sparse Tensors

Shuo Zhou, S. Erfani, J. Bailey
{"title":"Online CP Decomposition for Sparse Tensors","authors":"Shuo Zhou, S. Erfani, J. Bailey","doi":"10.1109/ICDM.2018.00202","DOIUrl":null,"url":null,"abstract":"Tensor decomposition techniques such as CANDECOMP/PARAFAC (CP) decomposition have achieved great success across a range of scientific fields. They have been traditionally applied to dense, static data. However, today's datasets are often highly sparse and dynamically changing over time. Traditional decomposition methods such as Alternating Least Squares (ALS) cannot be easily applied to sparse tensors, due to poor efficiency. Furthermore, existing online tensor decomposition methods mostly target dense tensors, and thus also encounter significant scalability issues for sparse data. To address this gap, we propose a new incremental algorithm for tracking the CP decompositions of online sparse tensors on-the-fly. Experiments on nine real-world datasets show that our algorithm is able to produce quality decompositions of comparable quality to the most accurate algorithm, ALS, whilst at the same time achieving speed improvements of up to 250 times and 100 times less memory.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Tensor decomposition techniques such as CANDECOMP/PARAFAC (CP) decomposition have achieved great success across a range of scientific fields. They have been traditionally applied to dense, static data. However, today's datasets are often highly sparse and dynamically changing over time. Traditional decomposition methods such as Alternating Least Squares (ALS) cannot be easily applied to sparse tensors, due to poor efficiency. Furthermore, existing online tensor decomposition methods mostly target dense tensors, and thus also encounter significant scalability issues for sparse data. To address this gap, we propose a new incremental algorithm for tracking the CP decompositions of online sparse tensors on-the-fly. Experiments on nine real-world datasets show that our algorithm is able to produce quality decompositions of comparable quality to the most accurate algorithm, ALS, whilst at the same time achieving speed improvements of up to 250 times and 100 times less memory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏张量的在线CP分解
张量分解技术,如CANDECOMP/PARAFAC (CP)分解已经在一系列科学领域取得了巨大的成功。它们传统上应用于密集的静态数据。然而,今天的数据集通常是高度稀疏的,并且随着时间的推移而动态变化。传统的分解方法,如交替最小二乘(ALS),由于效率不高,不能很容易地应用于稀疏张量。此外,现有的在线张量分解方法大多针对密集张量,因此也遇到了稀疏数据的显著可扩展性问题。为了解决这个问题,我们提出了一种新的增量算法来跟踪在线稀疏张量的动态CP分解。在9个真实数据集上的实验表明,我们的算法能够产生与最精确的ALS算法相当的质量分解,同时实现高达250倍的速度改进和100倍的内存减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1