Probabilistic Multi-Stability Assessment in Power Systems with Uncertain Wind Generation

R. Mochamad, A. Ehsan, R. Preece
{"title":"Probabilistic Multi-Stability Assessment in Power Systems with Uncertain Wind Generation","authors":"R. Mochamad, A. Ehsan, R. Preece","doi":"10.1109/PMAPS47429.2020.9183660","DOIUrl":null,"url":null,"abstract":"This paper presents the application of a probabilistic multi-stability assessment of a modified two-area system under the presence of low and high uncertainty sources. The stability of the network is assessed under four stability regimes: frequency, small-signal rotor angle, large-signal rotor angle, and long-term voltage. The probabilistic assessment is carried out using Monte Carlo simulation. Two cases considering low and high uncertainty are investigated. The obtained results are presented in the form of parallel coordinate plots so that the interaction between multiple stability regimes can be more easily understood. It is observed that the poor response of small-signal rotor angle stability generally corresponds to poor response of other stability types in low uncertainty case. However, once the level of uncertainty increases and more sources of uncertainty exist, this relationship is significantly changed.","PeriodicalId":126918,"journal":{"name":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS47429.2020.9183660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the application of a probabilistic multi-stability assessment of a modified two-area system under the presence of low and high uncertainty sources. The stability of the network is assessed under four stability regimes: frequency, small-signal rotor angle, large-signal rotor angle, and long-term voltage. The probabilistic assessment is carried out using Monte Carlo simulation. Two cases considering low and high uncertainty are investigated. The obtained results are presented in the form of parallel coordinate plots so that the interaction between multiple stability regimes can be more easily understood. It is observed that the poor response of small-signal rotor angle stability generally corresponds to poor response of other stability types in low uncertainty case. However, once the level of uncertainty increases and more sources of uncertainty exist, this relationship is significantly changed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定风力发电下电力系统的概率多稳定性评估
本文给出了在低不确定性源和高不确定性源存在下,改进的双区域系统的概率多稳定性评估的应用。在频率、小信号转子角、大信号转子角和长期电压四种稳定状态下对电网的稳定性进行了评估。利用蒙特卡罗模拟方法进行了概率评估。研究了低不确定度和高不确定度两种情况。得到的结果以平行坐标图的形式表示,以便更容易理解多个稳定区之间的相互作用。研究发现,在低不确定度情况下,小信号转子角稳定性响应差通常与其他稳定性响应差相对应。然而,一旦不确定性水平增加,并且存在更多的不确定性来源,这种关系就会发生显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Operating Reserve Assessment in Systems with Energy Storage and Electric Vehicles Framework and methodology for active distribution grid planning in Norway Parallel GPU Implementation for Fast Generating System Adequacy Assessment via Sequential Monte Carlo Simulation Distribution System Planning Considering Power Quality, Loadability and Economic Aspects Modelling and Simulation of Uncertainty in the Placement of Distributed Energy Resources for Planning Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1