Analyzing Intraductal Papillary Mucinous Neoplasms Using Artificial Neural Network Methodologic Triangulation

S. Walczak, J. Permuth, V. Velanovich
{"title":"Analyzing Intraductal Papillary Mucinous Neoplasms Using Artificial Neural Network Methodologic Triangulation","authors":"S. Walczak, J. Permuth, V. Velanovich","doi":"10.4018/ijhisi.2019100102","DOIUrl":null,"url":null,"abstract":"Intraductal papillary mucinous neoplasms (IPMN) are a type of mucinous pancreatic cyst. IPMN have been shown to be pre-malignant precursors to pancreatic cancer, which has an extremely high mortality rate with average survival less than 1 year. The purpose of this analysis is to utilize methodological triangulation using artificial neural networks and regression to examine the impact and effectiveness of a collection of variables believed to be predictive of malignant IPMN pathology. Results indicate that the triangulation is effective in both finding a new predictive variable and possibly reducing the number of variables needed for predicting if an IPMN is malignant or benign.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.2019100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Intraductal papillary mucinous neoplasms (IPMN) are a type of mucinous pancreatic cyst. IPMN have been shown to be pre-malignant precursors to pancreatic cancer, which has an extremely high mortality rate with average survival less than 1 year. The purpose of this analysis is to utilize methodological triangulation using artificial neural networks and regression to examine the impact and effectiveness of a collection of variables believed to be predictive of malignant IPMN pathology. Results indicate that the triangulation is effective in both finding a new predictive variable and possibly reducing the number of variables needed for predicting if an IPMN is malignant or benign.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用人工神经网络三角法分析导管内乳头状粘液瘤
导管内乳头状粘液瘤(IPMN)是胰腺粘液囊肿的一种。IPMN已被证明是胰腺癌的恶性前体,胰腺癌的死亡率极高,平均生存期不到1年。本分析的目的是利用人工神经网络和回归的方法学三角测量来检查被认为可以预测恶性IPMN病理的一系列变量的影响和有效性。结果表明,三角测量在发现新的预测变量和可能减少预测IPMN是恶性还是良性所需的变量数量方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of Electronic Health Records in Virtual Health Environments: The Case of Rocket Health in Uganda Hospital Management Practice of Combined Prediction Method Based on Neural Network Tablet in the Consultation Room and Physician Satisfaction Digital Disparities in Patient Adoption of Telemedicine: A Qualitative Analysis of the Patient Experience A Deep Neural Network for Detecting Coronavirus Disease Using Chest X-Ray Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1