VLSI Architecture of Generalized Pooling for Hardware Acceleration of Convolutional Neural Networks

Akash Ther, Binit Kumar Pandit, Ayan Banerjee
{"title":"VLSI Architecture of Generalized Pooling for Hardware Acceleration of Convolutional Neural Networks","authors":"Akash Ther, Binit Kumar Pandit, Ayan Banerjee","doi":"10.1109/ESDC56251.2023.10149878","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) handle a massive variety of datasets with great accuracy for various image processing and computer vision applications. However, it comes at the cost of the requirement of large hardware resources, which are computational and energy extensive. There is a need for efficient hardware and algorithmic optimization for real-time CNN inference while deploying the CNN model. This paper proposes a novel VLSI architecture of generalized pooling operation for hardware acceleration of CNN inference in real-time. Generalized pooling operation adaptively downsamples the huge parameter set generated by the convolutional layer by generating weights as per the input features. It is capable of accommodating varying feature maps and preserves significant features, unlike other counterparts maximum and average pooling. In order to efficiently compute the output of the generalised pooling operation, the proposed hardware design makes use of the Newton-Raphson reciprocal approximation for division operations, a low number of comparators, and a high degree of parallelism. The proposed architecture is developed and tested for performance evaluation on Xilinx Vivado 2018.3, and the target device chosen is Zynq UltraScale + MPSoC ZCU104 Evaluation board.","PeriodicalId":354855,"journal":{"name":"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESDC56251.2023.10149878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Networks (CNNs) handle a massive variety of datasets with great accuracy for various image processing and computer vision applications. However, it comes at the cost of the requirement of large hardware resources, which are computational and energy extensive. There is a need for efficient hardware and algorithmic optimization for real-time CNN inference while deploying the CNN model. This paper proposes a novel VLSI architecture of generalized pooling operation for hardware acceleration of CNN inference in real-time. Generalized pooling operation adaptively downsamples the huge parameter set generated by the convolutional layer by generating weights as per the input features. It is capable of accommodating varying feature maps and preserves significant features, unlike other counterparts maximum and average pooling. In order to efficiently compute the output of the generalised pooling operation, the proposed hardware design makes use of the Newton-Raphson reciprocal approximation for division operations, a low number of comparators, and a high degree of parallelism. The proposed architecture is developed and tested for performance evaluation on Xilinx Vivado 2018.3, and the target device chosen is Zynq UltraScale + MPSoC ZCU104 Evaluation board.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络硬件加速的广义池化VLSI架构
卷积神经网络(cnn)以极高的精度处理各种图像处理和计算机视觉应用的大量数据集。然而,它的代价是需要大量的硬件资源,这些资源需要大量的计算和能源。在部署CNN模型时,需要对实时CNN推理进行有效的硬件和算法优化。本文提出了一种基于广义池化运算的VLSI架构,用于CNN推理的实时硬件加速。广义池化操作根据输入特征生成权值,自适应地对卷积层生成的庞大参数集进行下采样。它能够适应不同的特征映射,并保留重要的特征,不像其他对等的最大和平均池化。为了有效地计算广义池化操作的输出,所提出的硬件设计利用牛顿-拉夫森互反近似进行除法操作,较少的比较器数量和高度的并行性。在Xilinx Vivado 2018.3平台上开发并测试了所提出的架构,并选择了Zynq UltraScale + MPSoC ZCU104评估板作为目标器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of RF-based networking for underwater wireless sensor networks using dynamic cluster head selection strategy Scalp EEG-based Classification of Disorder of Consciousness States using Machine Learning Techniques Video Label Enhancing and Standardization through Transcription and WikiId Mapping Techniques Remote Sensing Cloud Removal using a Combination of Spatial Attention and Edge Detection Impact of Pruning and Quantization: A Light Weight Multi-Sensor Pothole Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1