Text Mining from Social Media for Public Health Applications

Joana M. Barros
{"title":"Text Mining from Social Media for Public Health Applications","authors":"Joana M. Barros","doi":"10.1145/3079452.3079475","DOIUrl":null,"url":null,"abstract":"Public Health is crucial to manage and monitor threats to the health of the population. In recent years, Twitter has been successfully applied to monitor diseases through its ability to provide near real-time data and proved to be an asset to the domain. This research aims to further explore capabilities of Twitter in the disease surveillance field by focusing on its geolocation feature and health mentions, identifiable through disease-specific language patterns present in Twitter messages.","PeriodicalId":245682,"journal":{"name":"Proceedings of the 2017 International Conference on Digital Health","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079452.3079475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Public Health is crucial to manage and monitor threats to the health of the population. In recent years, Twitter has been successfully applied to monitor diseases through its ability to provide near real-time data and proved to be an asset to the domain. This research aims to further explore capabilities of Twitter in the disease surveillance field by focusing on its geolocation feature and health mentions, identifiable through disease-specific language patterns present in Twitter messages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
公共卫生应用的社交媒体文本挖掘
公共卫生对于管理和监测对人口健康的威胁至关重要。近年来,Twitter通过其提供接近实时数据的能力成功地应用于疾病监测,并被证明是该领域的一项资产。本研究旨在进一步探索Twitter在疾病监测领域的能力,重点关注其地理定位功能和健康提及,通过Twitter消息中存在的疾病特定语言模式来识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Gene-Disease Relations from Text to Support Biomarker Discovery Towards Health (Aware) Recommender Systems A Regularization Approach for Identifying Cumulative Lagged Effects in Smart Health Applications FitBit Garden: A Mobile Game Designed to Increase Physical Activity in Children Health Misinformation in Search and Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1