Performance Improvements in Cooperative Downloading: Encoding and Strategies for Heterogeneous Vehicular Networks

Michael Niebisch, D. Pfaller, Reinhard German, Anatoli Djanatliev
{"title":"Performance Improvements in Cooperative Downloading: Encoding and Strategies for Heterogeneous Vehicular Networks","authors":"Michael Niebisch, D. Pfaller, Reinhard German, Anatoli Djanatliev","doi":"10.1109/LCN53696.2022.9843364","DOIUrl":null,"url":null,"abstract":"With the vast increase in software and digital services in the vehicular domain, communication networks play an increasingly important role. While some applications rely on fast data transfers, other tasks can be offloaded and delayed. For those, cooperative downloading schemes have been proposed, which utilize opportunistic communication, heterogeneous networks, and extended deadlines in a best effort approach. The efficiency of such communication depends on the chosen protocol and strategies, which impact the performance. We, therefore, introduce a novel hybrid encoding scheme for the encoding of relevant data. Additionally, we study the impact of reacting to data requests and initial distribution of data. We introduce a protocol logic for cooperative downloading and evaluate the overall downloading efficiency in simulation. A comparison between strategies reveals improvements of up to 31.8% in downloading progress and a time reduction averaging 46.4% for the best set of parameters, while also reducing the channel load significantly.","PeriodicalId":303965,"journal":{"name":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN53696.2022.9843364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the vast increase in software and digital services in the vehicular domain, communication networks play an increasingly important role. While some applications rely on fast data transfers, other tasks can be offloaded and delayed. For those, cooperative downloading schemes have been proposed, which utilize opportunistic communication, heterogeneous networks, and extended deadlines in a best effort approach. The efficiency of such communication depends on the chosen protocol and strategies, which impact the performance. We, therefore, introduce a novel hybrid encoding scheme for the encoding of relevant data. Additionally, we study the impact of reacting to data requests and initial distribution of data. We introduce a protocol logic for cooperative downloading and evaluate the overall downloading efficiency in simulation. A comparison between strategies reveals improvements of up to 31.8% in downloading progress and a time reduction averaging 46.4% for the best set of parameters, while also reducing the channel load significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同下载的性能改进:异构车辆网络的编码和策略
随着车载领域软件和数字业务的大量增加,通信网络发挥着越来越重要的作用。虽然一些应用程序依赖于快速数据传输,但其他任务可以卸载和延迟。对于这些问题,已经提出了合作下载方案,该方案利用机会性通信、异构网络和以最佳努力方式延长期限。这种通信的效率取决于所选择的协议和策略,它们会影响性能。因此,我们引入了一种新的混合编码方案来对相关数据进行编码。此外,我们还研究了响应数据请求和数据初始分布的影响。我们引入了一种协作下载的协议逻辑,并在仿真中评估了整体下载效率。两种策略之间的比较表明,对于最佳参数集,下载进度提高了31.8%,平均减少了46.4%的时间,同时也显著减少了信道负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MicroTL: Transfer Learning on Low-Power IoT Devices Service-Based Identification of Highly Coupled Mobile Applications Raising the AWAREness of BFT Protocols for Soaring Network Delays How to build socio-organizational information from remote IP addresses to enrich security analysis? ReCEIF: Reinforcement Learning-Controlled Effective Ingress Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1