{"title":"Faster and Finer Pose Estimation for Object Pool in a Single RGB Image","authors":"Lee Aing, W. Lie, J. Chiang","doi":"10.1109/VCIP53242.2021.9675316","DOIUrl":null,"url":null,"abstract":"Predicting/estimating the 6DoF pose parameters for multi-instance objects accurately in a fast manner is an important issue in robotic and computer vision. Even though some bottom-up methods have been proposed to be able to estimate multiple instance poses simultaneously, their accuracy cannot be considered as good enough when compared to other state-of-the-art top-down methods. Their processing speed still cannot respond to practical applications. In this paper, we present a faster and finer bottom-up approach of deep convolutional neural network to estimate poses of the object pool even multiple instances of the same object category present high occlusion/overlapping. Several techniques such as prediction of semantic segmentation map, multiple keypoint vector field, and 3D coordinate map, and diagonal graph clustering are proposed and combined to achieve the purpose. Experimental results and ablation studies show that the proposed system can achieve comparable accuracy at a speed of 24.7 frames per second for up to 7 objects by evaluation on the well-known Occlusion LINEMOD dataset.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting/estimating the 6DoF pose parameters for multi-instance objects accurately in a fast manner is an important issue in robotic and computer vision. Even though some bottom-up methods have been proposed to be able to estimate multiple instance poses simultaneously, their accuracy cannot be considered as good enough when compared to other state-of-the-art top-down methods. Their processing speed still cannot respond to practical applications. In this paper, we present a faster and finer bottom-up approach of deep convolutional neural network to estimate poses of the object pool even multiple instances of the same object category present high occlusion/overlapping. Several techniques such as prediction of semantic segmentation map, multiple keypoint vector field, and 3D coordinate map, and diagonal graph clustering are proposed and combined to achieve the purpose. Experimental results and ablation studies show that the proposed system can achieve comparable accuracy at a speed of 24.7 frames per second for up to 7 objects by evaluation on the well-known Occlusion LINEMOD dataset.