The influence of the input parameters variation of the non-seasonal ARIMAX model on the accuracy of meteorological parameters forecasting

A. Kabović, M. Kabović, Slavica V. Boštjančič Rakas, V. Timčenko
{"title":"The influence of the input parameters variation of the non-seasonal ARIMAX model on the accuracy of meteorological parameters forecasting","authors":"A. Kabović, M. Kabović, Slavica V. Boštjančič Rakas, V. Timčenko","doi":"10.1109/TELFOR56187.2022.9983670","DOIUrl":null,"url":null,"abstract":"ARIMA (autoregressive integrated moving-average), one of the most popular models for time-series modeling, is recently frequently used for the needs of events forecasting and prediction in business, medicine, meteorology and engineering domains. In this paper, we present the results of testing the non-seasonal ARIMAX model for short-time forecasting of two meteorological parameters: wind speed and ambient temperature. For the needs of the forecasting accuracy comparison, we propose the use of the MAE (Mean Absolute Error). Various kinds of script files were made using R-Studio, the development environment for testing purposes.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ARIMA (autoregressive integrated moving-average), one of the most popular models for time-series modeling, is recently frequently used for the needs of events forecasting and prediction in business, medicine, meteorology and engineering domains. In this paper, we present the results of testing the non-seasonal ARIMAX model for short-time forecasting of two meteorological parameters: wind speed and ambient temperature. For the needs of the forecasting accuracy comparison, we propose the use of the MAE (Mean Absolute Error). Various kinds of script files were made using R-Studio, the development environment for testing purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非季节ARIMAX模式输入参数变化对气象参数预报精度的影响
ARIMA (autoregressive integrated moving-average,自回归综合移动平均)是时间序列建模中最流行的模型之一,近年来在商业、医学、气象和工程等领域经常用于事件预测和预测。本文介绍了非季节性ARIMAX模型对风速和环境温度两个气象参数的短时预报结果。对于预测精度比较的需要,我们提出使用平均绝对误差(MAE)。使用R-Studio(用于测试目的的开发环境)制作了各种脚本文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overhead Analysis of a Bio-Inspired Routing over FANET A multispectral acquisition system for potential detection of Flavescence dorée AI-Blockchain Systems in Aerospace Engineering and Management: Review and Challenges A New Evaluation Method for Call Rating in Contact Center 2D Overlapping Range-Doppler Map Approach for Helicopter Classification by Using GRU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1