Mengqi Zhang, Yuwei Xia, Q. Liu, Shu Wu, Liang Wang
{"title":"Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning","authors":"Mengqi Zhang, Yuwei Xia, Q. Liu, Shu Wu, Liang Wang","doi":"10.1145/3543507.3583242","DOIUrl":null,"url":null,"abstract":"Temporal Knowledge graph (TKG) reasoning aims to predict missing facts based on historical TKG data. Most of the existing methods are incapable of explicitly modeling the long-term time dependencies from history and neglect the adaptive integration of the long- and short-term information. To tackle these problems, we propose a novel method that utilizes a designed Hierarchical Relational Graph Neural Network to learn the Long- and Short-term representations for TKG reasoning, namely HGLS. Specifically, to explicitly associate entities in different timestamps, we first transform the TKG into a global graph. Based on the built graph, we design a Hierarchical Relational Graph Neural Network that executes in two levels: The sub-graph level is to capture the semantic dependencies within concurrent facts of each KG. And the global-graph level aims to model the temporal dependencies between entities. Furthermore, we design a module to extract the long- and short-term information from the output of these two levels. Finally, the long- and short-term representations are fused into a unified one by Gating Integration for entity prediction. Extensive experiments on four datasets demonstrate the effectiveness of HGLS.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Temporal Knowledge graph (TKG) reasoning aims to predict missing facts based on historical TKG data. Most of the existing methods are incapable of explicitly modeling the long-term time dependencies from history and neglect the adaptive integration of the long- and short-term information. To tackle these problems, we propose a novel method that utilizes a designed Hierarchical Relational Graph Neural Network to learn the Long- and Short-term representations for TKG reasoning, namely HGLS. Specifically, to explicitly associate entities in different timestamps, we first transform the TKG into a global graph. Based on the built graph, we design a Hierarchical Relational Graph Neural Network that executes in two levels: The sub-graph level is to capture the semantic dependencies within concurrent facts of each KG. And the global-graph level aims to model the temporal dependencies between entities. Furthermore, we design a module to extract the long- and short-term information from the output of these two levels. Finally, the long- and short-term representations are fused into a unified one by Gating Integration for entity prediction. Extensive experiments on four datasets demonstrate the effectiveness of HGLS.