Kernel-based Tracking from a Probabilistic Viewpoint

Q. A. Nguyen, A. Robles-Kelly, Chunhua Shen
{"title":"Kernel-based Tracking from a Probabilistic Viewpoint","authors":"Q. A. Nguyen, A. Robles-Kelly, Chunhua Shen","doi":"10.1109/CVPR.2007.383240","DOIUrl":null,"url":null,"abstract":"In this paper, we present a probabilistic formulation of kernel-based tracking methods based upon maximum likelihood estimation. To this end, we view the coordinates for the pixels in both, the target model and its candidate as random variables and make use of a generative model so as to cast the tracking task into a maximum likelihood framework. This, in turn, permits the use of the EM-algorithm to estimate a set of latent variables that can be used to update the target-center position. Once the latent variables have been estimated, we use the Kullback-Leibler divergence so as to minimise the mutual information between the target model and candidate distributions in order to develop a target-center update rule and a kernel bandwidth adjustment scheme. The method is very general in nature. We illustrate the utility of our approach for purposes of tracking on real-world video sequences using two alternative kernel functions.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we present a probabilistic formulation of kernel-based tracking methods based upon maximum likelihood estimation. To this end, we view the coordinates for the pixels in both, the target model and its candidate as random variables and make use of a generative model so as to cast the tracking task into a maximum likelihood framework. This, in turn, permits the use of the EM-algorithm to estimate a set of latent variables that can be used to update the target-center position. Once the latent variables have been estimated, we use the Kullback-Leibler divergence so as to minimise the mutual information between the target model and candidate distributions in order to develop a target-center update rule and a kernel bandwidth adjustment scheme. The method is very general in nature. We illustrate the utility of our approach for purposes of tracking on real-world video sequences using two alternative kernel functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率观点的核跟踪
在本文中,我们提出了一种基于极大似然估计的核跟踪方法的概率公式。为此,我们将目标模型及其候选模型中像素的坐标视为随机变量,并利用生成模型将跟踪任务置于最大似然框架中。这反过来又允许使用em算法来估计一组可用于更新目标中心位置的潜在变量。一旦潜在变量被估计,我们使用Kullback-Leibler散度来最小化目标模型和候选分布之间的互信息,从而制定目标中心更新规则和核带宽调整方案。这个方法在本质上是非常通用的。我们使用两个可选的核函数来说明我们的方法在跟踪真实世界视频序列方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1