STP: In-network aggregation through proximity queries in a Sensor Network

Md. Rakibul Haque, Mahmuda Naznin, M. Asaduzzaman, R. Ahmed
{"title":"STP: In-network aggregation through proximity queries in a Sensor Network","authors":"Md. Rakibul Haque, Mahmuda Naznin, M. Asaduzzaman, R. Ahmed","doi":"10.1109/ICCIT.2009.5407297","DOIUrl":null,"url":null,"abstract":"Event detection and notification is a common task in a Wireless Sensor Networks (WSN). Efficient data aggregation and minimization of energy consumption are the great research challenges in WSN. In WSN, aggregated event information is more important than individual event information for energy saving and reliability. Proximity queries or query approximation can be used to reduce the complexity of data aggregation and energy consumption. This paper presents an efficient and scalable hybrid framework for processing spatial and temporal proximity queries in WSN which we call STP. STP builds tree structure with less overhead, and reduces the event propagation cost through proximity queries. STP reduces energy consumption by reducing the number of aggregator nodes, which ultimately increases the network life time. STP eliminates the unnecessary aggregation of events using a tunable temporal proximity threshold. We compare STP's performance with another spatial query processing method and we show that, STP performs better.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"14 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Event detection and notification is a common task in a Wireless Sensor Networks (WSN). Efficient data aggregation and minimization of energy consumption are the great research challenges in WSN. In WSN, aggregated event information is more important than individual event information for energy saving and reliability. Proximity queries or query approximation can be used to reduce the complexity of data aggregation and energy consumption. This paper presents an efficient and scalable hybrid framework for processing spatial and temporal proximity queries in WSN which we call STP. STP builds tree structure with less overhead, and reduces the event propagation cost through proximity queries. STP reduces energy consumption by reducing the number of aggregator nodes, which ultimately increases the network life time. STP eliminates the unnecessary aggregation of events using a tunable temporal proximity threshold. We compare STP's performance with another spatial query processing method and we show that, STP performs better.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STP:传感器网络中通过邻近查询进行的网络内聚合
事件检测和通知是无线传感器网络(WSN)中的一项常见任务。高效的数据聚合和能量消耗最小化是无线传感器网络研究的重大挑战。在无线传感器网络中,为了节能和提高可靠性,聚合事件信息比单个事件信息更重要。可以使用邻近查询或查询近似来降低数据聚合的复杂性和能耗。本文提出了一种高效、可扩展的用于处理WSN中时空接近查询的混合框架,我们称之为STP。STP以较少的开销构建树形结构,并通过邻近查询降低事件传播成本。STP通过减少聚合器节点的数量来降低能耗,从而最终延长网络的生命周期。STP使用可调的时间接近阈值消除了不必要的事件聚合。将STP的性能与另一种空间查询处理方法进行了比较,结果表明STP的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content clustering of Computer Mediated Courseware using data mining technique An audible Bangla text-entry method in Mobile phones with intelligent keypad Design of meandering probe fed microstrip patch antenna for wireless communication system Can Information Retrieval techniques automatic assessment challenges? Logical clock based Last Update Consistency model for Distributed Shared Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1