The Study of Impact of Matrix-Processor Mapping on the Parallel Sparse Matrix-Vector Multiplication

I. Šimeček, D. Langr, Erik Srnec
{"title":"The Study of Impact of Matrix-Processor Mapping on the Parallel Sparse Matrix-Vector Multiplication","authors":"I. Šimeček, D. Langr, Erik Srnec","doi":"10.1109/SYNASC.2013.49","DOIUrl":null,"url":null,"abstract":"Sparse matrix-vector multiplication (shortly spM × V) is one of the most common subroutines in the numerical linear algebra. The parallelization of this task looks easy and straightforward, but it is not optimal in general case. This paper discuss some matrix-processor mappings and their impact on parallel spM × V execution on massively parallel systems. We try to balance the performance and the overhead of the required transformation. We also present algorithms for redistribution. We propose four quality measures and derive lower and upper bound for different mappings. Our spM × V algorithms are scalable for almost all matrices arising from various technical areas.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sparse matrix-vector multiplication (shortly spM × V) is one of the most common subroutines in the numerical linear algebra. The parallelization of this task looks easy and straightforward, but it is not optimal in general case. This paper discuss some matrix-processor mappings and their impact on parallel spM × V execution on massively parallel systems. We try to balance the performance and the overhead of the required transformation. We also present algorithms for redistribution. We propose four quality measures and derive lower and upper bound for different mappings. Our spM × V algorithms are scalable for almost all matrices arising from various technical areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩阵-处理器映射对并行稀疏矩阵-向量乘法影响的研究
稀疏矩阵向量乘法(简称spM × V)是数值线性代数中最常见的子程序之一。这个任务的并行化看起来简单明了,但在一般情况下并不是最优的。本文讨论了一些矩阵-处理器映射及其对大规模并行系统中并行spM × V执行的影响。我们试图平衡性能和所需转换的开销。我们也提出了再分配的算法。我们提出了四种质量度量,并推导了不同映射的下界和上界。我们的spM × V算法可扩展到几乎所有来自不同技术领域的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From the Desktop to the Multi-clouds: The Case of ModelioSaaS Bound Propagation for Arithmetic Reasoning in Vampire Dependence of the Oscillatory Movements of an Unmanned Aerial Vehicle on the Forward Velocity Cph CT Toolbox: CT Reconstruction for Education, Research and Industrial Applications Non-interleaving Operational Semantics for Geographically Replicated Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1