Fast Bayesian techniques for attenuation corrected whole-body PET

E. Mumcuoglu, R. Leahy, S. Cherry
{"title":"Fast Bayesian techniques for attenuation corrected whole-body PET","authors":"E. Mumcuoglu, R. Leahy, S. Cherry","doi":"10.1109/NSSMIC.1993.373625","DOIUrl":null,"url":null,"abstract":"The authors describe conjugate gradient algorithms for reconstruction of transmission and emission PET images. The reconstructions are based on a Bayesian formulation where the data are modeled as a collection of independent Poisson random variables and the image is modeled using a Markov random field. To ensure non-negativity of the solution a penalty function is used to convert the problem to one of unconstrained optimization. Preconditioners are used to enhance convergence rates. These methods generally achieve effective convergence in 15-25 iterations. Reconstructions are presented of an /sup 18/FDG whole body scan from data collected using a Siemens/CTI ECAT931 whole body system. These results indicate significant improvements in emission image quality using the Bayesian approach, in comparison to filtered backprojection, particularly when reprojections of the MAP transmission image are used in place of the standard attenuation correction factors.<<ETX>>","PeriodicalId":287813,"journal":{"name":"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1993.373625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors describe conjugate gradient algorithms for reconstruction of transmission and emission PET images. The reconstructions are based on a Bayesian formulation where the data are modeled as a collection of independent Poisson random variables and the image is modeled using a Markov random field. To ensure non-negativity of the solution a penalty function is used to convert the problem to one of unconstrained optimization. Preconditioners are used to enhance convergence rates. These methods generally achieve effective convergence in 15-25 iterations. Reconstructions are presented of an /sup 18/FDG whole body scan from data collected using a Siemens/CTI ECAT931 whole body system. These results indicate significant improvements in emission image quality using the Bayesian approach, in comparison to filtered backprojection, particularly when reprojections of the MAP transmission image are used in place of the standard attenuation correction factors.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衰减校正全身PET的快速贝叶斯技术
作者描述了用于透射和发射PET图像重建的共轭梯度算法。重建基于贝叶斯公式,其中数据被建模为独立泊松随机变量的集合,图像使用马尔可夫随机场建模。为了保证解的非负性,利用罚函数将问题转化为无约束优化问题。使用前置条件提高收敛速度。这些方法通常在15-25次迭代中实现有效的收敛。利用西门子/CTI ECAT931全身系统采集的数据,对/sup 18/FDG全身扫描进行了重建。这些结果表明,与滤波后的反向投影相比,使用贝叶斯方法可以显著改善发射图像的质量,特别是当使用MAP传输图像的重新投影来代替标准衰减校正因子时
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation Of Wavelength Shifters For Spectral Separation Of Barium Fluoride Emissions High-speed Reconstruction Of SPECT Mages With A Tailored Piecewise Neural Network A 12-channel VMEBUS-based Pulse-height Analysis Module A Bipolar Analog Front-end Integrated Circuit For The SDC Silicon Tracker Detection geometry and reconstruction error in magnetic source imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1