Experimental and Theoretical Scrutiny of the Geometric Derivation of the Fundamental Matrix

T. Basta
{"title":"Experimental and Theoretical Scrutiny of the Geometric Derivation of the Fundamental Matrix","authors":"T. Basta","doi":"10.1145/3430199.3430227","DOIUrl":null,"url":null,"abstract":"In this paper, we prove mathematically that the geometric derivation of the fundamental matrix F of the two-view reconstruction problem is flawed. Although the fundamental matrix approach is quite classic, it is still taught in universities around the world. Thus, analyzing the derivation of F now is a non-trivial subject. The geometric derivation of E is based on the cross product of vectors in R3. The cross product (or vector product) of two vectors is x × y where x = ⟨x1, x2, x3⟩ and y = ⟨y1, y2, y3⟩ in R3. The relationship between the skew-matrix of a vector t in R3 and the cross product is [t]×y = t × y for any vector y in R3. In the derivation of the essential matrix we have E = [t]×R which is the result of replacing t × R by [t]×R, the cross product of a vector t and a 3×3 matrix R. This is an undefined operation and therefore the essential matrix derivation is flawed. The derivation of F, is based on the assertion that the set of all points in the first image and their corresponding points in the second image are protectively equivalent and therefore there exists a homography H&pgr; between the two images. An assertion that does not hold for 3D non-planar scenes.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we prove mathematically that the geometric derivation of the fundamental matrix F of the two-view reconstruction problem is flawed. Although the fundamental matrix approach is quite classic, it is still taught in universities around the world. Thus, analyzing the derivation of F now is a non-trivial subject. The geometric derivation of E is based on the cross product of vectors in R3. The cross product (or vector product) of two vectors is x × y where x = ⟨x1, x2, x3⟩ and y = ⟨y1, y2, y3⟩ in R3. The relationship between the skew-matrix of a vector t in R3 and the cross product is [t]×y = t × y for any vector y in R3. In the derivation of the essential matrix we have E = [t]×R which is the result of replacing t × R by [t]×R, the cross product of a vector t and a 3×3 matrix R. This is an undefined operation and therefore the essential matrix derivation is flawed. The derivation of F, is based on the assertion that the set of all points in the first image and their corresponding points in the second image are protectively equivalent and therefore there exists a homography H&pgr; between the two images. An assertion that does not hold for 3D non-planar scenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基本矩阵几何推导的实验与理论研究
本文从数学上证明了二视图重构问题的基本矩阵F的几何推导是有缺陷的。尽管基本的矩阵方法非常经典,但世界各地的大学仍然在教授它。因此,现在分析F的推导是一个不平凡的主题。E的几何推导是基于R3中向量的叉乘。两个向量的外积(或向量积)是x × y,其中x =⟨x1, x2, x3⟩和y =⟨y1, y2, y3⟩在R3中。R3中向量t的斜矩阵和外积的关系是[t]×y = t ×y对于任意R3中的向量y。在基本矩阵的推导中我们有E = [t]×R这是用[t]×R代替t ×R的结果,向量t和3×3矩阵R的叉乘,这是一个未定义的操作因此基本矩阵的推导是有缺陷的。F的推导基于如下断言:第一图像中所有点与第二图像中对应点的集合是保护等价的,因此存在单应性H&pgr;在两个图像之间。这个断言不适用于3D非平面场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Modeling of Riverbeds Based on NURBS Algorithm Multi-view Learning for 3D LGE-MRI Left Atrial Cavity Segmentation Detection of Key Structure of Auroral Images Based on Weakly Supervised Learning People Counting Based on Multi-scale Region Adaptive Segmentation and Depth Neural Network A Survey of Research on Image Data Sources Forensics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1