ECG rhythm classification using artificial neural networks

G. Oien, N. Bertelsen, T. Eftestøl, J. H. Husøy
{"title":"ECG rhythm classification using artificial neural networks","authors":"G. Oien, N. Bertelsen, T. Eftestøl, J. H. Husøy","doi":"10.1109/DSPWS.1996.555575","DOIUrl":null,"url":null,"abstract":"This paper discusses ECG rhythm classification using artificial neural networks (ANNs). We consider one 3-class problem where we distinguish between the normal sinus rhythm and two different abnormal rhythms, -and the practically very important \"treat/no-treat\" 2-class problem encountered e.g. when operating a semi-automatic defibrillation device. Autoregressive (AR) parameters, and samples of the signal's periodogram, are combined into feature vectors which are used as inputs to forward-connected multilayered perceptron ANNs. Training and testing is performed using signals from two different ECG data bases. The \"best\" net sizes and feature vector dimensions are decided upon by means of empirical tests. The results are compared with a previous method which also uses the AR model but which employs the learning vector quantization (LVQ) algorithm for the actual classification.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper discusses ECG rhythm classification using artificial neural networks (ANNs). We consider one 3-class problem where we distinguish between the normal sinus rhythm and two different abnormal rhythms, -and the practically very important "treat/no-treat" 2-class problem encountered e.g. when operating a semi-automatic defibrillation device. Autoregressive (AR) parameters, and samples of the signal's periodogram, are combined into feature vectors which are used as inputs to forward-connected multilayered perceptron ANNs. Training and testing is performed using signals from two different ECG data bases. The "best" net sizes and feature vector dimensions are decided upon by means of empirical tests. The results are compared with a previous method which also uses the AR model but which employs the learning vector quantization (LVQ) algorithm for the actual classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的心电节律分类
本文讨论了利用人工神经网络(ann)对心电节律进行分类。我们考虑一个3类问题,即区分正常窦性心律和两种不同的异常心律,以及实际上非常重要的“治疗/不治疗”2类问题,例如在操作半自动除颤装置时遇到的问题。自回归(AR)参数和信号周期图的样本组合成特征向量,作为前向连接多层感知器人工神经网络的输入。训练和测试使用来自两个不同ECG数据库的信号进行。“最佳”净尺寸和特征向量维度是通过经验测试来确定的。结果与先前使用AR模型但使用学习向量量化(LVQ)算法进行实际分类的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multirate modeling of human ear frequency resolution for hearing aids An OFDM spread spectrum system using lapped transforms and partial band interference suppression Spectral extrapolation in sub-band coding Memory efficient list based Hough transform for programmable digital signal processors with on-chip caches Towards a system for segmentation under noisy conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1