Cluster Analysis of Gene Expression Data

Alan Wee-Chung Liew, N. Law, Hong Yan
{"title":"Cluster Analysis of Gene Expression Data","authors":"Alan Wee-Chung Liew, N. Law, Hong Yan","doi":"10.4018/978-1-59904-849-9.CH045","DOIUrl":null,"url":null,"abstract":"Important insights into gene function can be gained by gene expression analysis. For example, some genes are turned on (expressed) or turned off (repressed) when there is a change in external conditions or stimuli. The expression of one gene is often regulated by the expression of other genes. A detail analysis of gene expression information will provide an understanding about the inter-networking of different genes and their functional roles. DNA microarray technology allows massively parallel, high throughput genome-wide profiling of gene expression in a single hybridization experiment [Lockhart & Winzeler, 2000]. It has been widely used in numerous studies over a broad range of biological disciplines, such as cancer classification (Armstrong et al., 2002), identification of genes relevant to a certain diagnosis or therapy (Muro et al., 2003), investigation of the mechanism of drug action and cancer prognosis (Kim et al., 2000; Duggan et al., 1999). Due to the large number of genes involved in microarray experiment study and the complexity of biological networks, clustering is an important exploratory technique for gene expression data analysis. In this article, we present a succinct review of some of our work in cluster analysis of gene expression data.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

Important insights into gene function can be gained by gene expression analysis. For example, some genes are turned on (expressed) or turned off (repressed) when there is a change in external conditions or stimuli. The expression of one gene is often regulated by the expression of other genes. A detail analysis of gene expression information will provide an understanding about the inter-networking of different genes and their functional roles. DNA microarray technology allows massively parallel, high throughput genome-wide profiling of gene expression in a single hybridization experiment [Lockhart & Winzeler, 2000]. It has been widely used in numerous studies over a broad range of biological disciplines, such as cancer classification (Armstrong et al., 2002), identification of genes relevant to a certain diagnosis or therapy (Muro et al., 2003), investigation of the mechanism of drug action and cancer prognosis (Kim et al., 2000; Duggan et al., 1999). Due to the large number of genes involved in microarray experiment study and the complexity of biological networks, clustering is an important exploratory technique for gene expression data analysis. In this article, we present a succinct review of some of our work in cluster analysis of gene expression data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因表达数据的聚类分析
通过基因表达分析可以获得对基因功能的重要见解。例如,当外部条件或刺激发生变化时,一些基因被打开(表达)或关闭(抑制)。一个基因的表达常常受到其他基因表达的调控。对基因表达信息的详细分析将有助于了解不同基因之间的相互联系及其功能作用。DNA微阵列技术允许在单个杂交实验中大规模并行、高通量的基因表达全基因组谱分析[Lockhart & Winzeler, 2000]。它已被广泛应用于多种生物学学科的众多研究中,如癌症分类(Armstrong等,2002)、与某种诊断或治疗相关的基因鉴定(Muro等,2003)、药物作用机制和癌症预后的研究(Kim等,2000;Duggan等人,1999)。由于微阵列实验研究涉及的基因数量多,生物网络复杂,聚类是基因表达数据分析的重要探索性技术。在这篇文章中,我们简要回顾了我们在基因表达数据聚类分析方面的一些工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emerging Applications in Immersive Technologies Knowledge-Based Systems RBF Networks for Power System Topology Verification Association Rule Mining "Narrative" Information Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1