Enhanced K-Nearest Neighbor Model For Multi-steps Traffic Flow Forecast in Urban Roads

Amin Mallek, Daniel Klosa, C. Büskens
{"title":"Enhanced K-Nearest Neighbor Model For Multi-steps Traffic Flow Forecast in Urban Roads","authors":"Amin Mallek, Daniel Klosa, C. Büskens","doi":"10.1109/ISC255366.2022.9921897","DOIUrl":null,"url":null,"abstract":"Short-term flow forecast is a fundamental key in intelligent transportation planning. Often accurate predictions are provided by the predictive models the most adapted to the nature of the addressed problem. In this paper we present a k-Nearest Neighbor approach (E-KNN) enhanced by taking advantage of traffic attributes. The proposed model is applied to 11 weeks of non-processed data, recorded by 7 inductive loop detectors installed on urban roads located in downtown of Bremen (Germany). The performance of E-KNN is tested on 3 weeks of data and reported following different day-hours categories, including rush hours. Excluding early day-hours where traffic is insignificant, E-KNN performs 6-steps (1h) prediction with an average absolute relative error of 17% on test-set.","PeriodicalId":277015,"journal":{"name":"2022 IEEE International Smart Cities Conference (ISC2)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC255366.2022.9921897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Short-term flow forecast is a fundamental key in intelligent transportation planning. Often accurate predictions are provided by the predictive models the most adapted to the nature of the addressed problem. In this paper we present a k-Nearest Neighbor approach (E-KNN) enhanced by taking advantage of traffic attributes. The proposed model is applied to 11 weeks of non-processed data, recorded by 7 inductive loop detectors installed on urban roads located in downtown of Bremen (Germany). The performance of E-KNN is tested on 3 weeks of data and reported following different day-hours categories, including rush hours. Excluding early day-hours where traffic is insignificant, E-KNN performs 6-steps (1h) prediction with an average absolute relative error of 17% on test-set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市道路多步交通流预测的增强k近邻模型
短期流量预测是智能交通规划的关键。通常准确的预测是由最适合所处理问题的性质的预测模型提供的。本文提出了一种利用流量属性增强的k-最近邻方法(E-KNN)。所提出的模型应用于11周的未处理数据,这些数据由安装在德国不来梅市中心城市道路上的7个电感回路探测器记录。E-KNN的性能在3周的数据上进行了测试,并根据不同的白天时间类别(包括高峰时间)进行了报告。排除流量不显著的早期时段,E-KNN在测试集上执行6步(1h)预测,平均绝对相对误差为17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Technology by Older Adults in El Paso, Texas during COVID-19: Purposes, Challenges, and Opportunities Sharing-DNA: a data-driven tool to map the attitude towards sharing services across Europe Development of Hybrid Photovoltaic-based Nanogrids for the Energy Rehabilitation of Public Buildings: The BERLIN Project Advanced Short-Term Net Load Forecasting for Renewable-Based Microgrids Multiple Pedestrian Tracking Framework using Deep Learning-based Multiscale Image Analysis for Stationary-camera Video Surveillance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1