The Supply Chain Optimization of Ready Mix Concrete at PT X in Surabaya Using the Metaheuristic Method

Daniel Mulyono Kresnadi, D. Prayogo
{"title":"The Supply Chain Optimization of Ready Mix Concrete at PT X in Surabaya Using the Metaheuristic Method","authors":"Daniel Mulyono Kresnadi, D. Prayogo","doi":"10.9744/DUTS.8.1.35-48","DOIUrl":null,"url":null,"abstract":"Infrastructure development is followed by an increase in demand for ready-mix concrete (RMC). Some failures in delivering RMC on time would delay construction performance or the truck would need to wait at the construction site, so the delivered concrete became useless if it exceeded the concrete setting time limit. This research optimizes the supply chain of ready mix concrete based on real-time data from a batching plant in Surabaya by using the metaheuristic method. The metaheuristic method used in this research are Particle Swarm Optimization (PSO) and Symbiotic Organisms Search (SOS), and also compares the performance of both metaheuristic algorithms, because both algorithms have proven effective in solving various optimization problems.  The objective function of this research is to minimize the total waiting times of mixer trucks. The results showed that the SOS algorithm has better performance than the PSO algorithm, which gets lower total waiting times of 100,863 hours.","PeriodicalId":187066,"journal":{"name":"Dimensi Utama Teknik Sipil","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dimensi Utama Teknik Sipil","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9744/DUTS.8.1.35-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Infrastructure development is followed by an increase in demand for ready-mix concrete (RMC). Some failures in delivering RMC on time would delay construction performance or the truck would need to wait at the construction site, so the delivered concrete became useless if it exceeded the concrete setting time limit. This research optimizes the supply chain of ready mix concrete based on real-time data from a batching plant in Surabaya by using the metaheuristic method. The metaheuristic method used in this research are Particle Swarm Optimization (PSO) and Symbiotic Organisms Search (SOS), and also compares the performance of both metaheuristic algorithms, because both algorithms have proven effective in solving various optimization problems.  The objective function of this research is to minimize the total waiting times of mixer trucks. The results showed that the SOS algorithm has better performance than the PSO algorithm, which gets lower total waiting times of 100,863 hours.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元启发式方法的泗水PT X预拌混凝土供应链优化
随着基础设施的发展,对预拌混凝土(RMC)的需求增加。如果RMC不能按时交付,则会延误施工进度或卡车需要在施工现场等待,因此交付的混凝土如果超过混凝土凝结时间就会失效。本研究采用元启发式方法,基于泗水一家配料厂的实时数据,对现拌混凝土供应链进行了优化。本研究中使用的元启发式方法是粒子群优化(PSO)和共生生物搜索(SOS),并比较了这两种元启发式算法的性能,因为这两种算法都被证明在解决各种优化问题上是有效的。本研究的目标函数是最小化搅拌车的总等待时间。结果表明,SOS算法比PSO算法具有更好的性能,总等待时间为100,863小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OPTIMASI FLUKTUASI RESOURCE PADA PROYEK PERUMAHAN X YANG MENGGUNAKAN METODE PENJADWALAN LINE OF BALANCE DENGAN ALGORITMA SYMBIOTIC ORGANISMS SEARCH PENGARUH MANAJEMEN MODAL KERJA TERHADAP PROFITABILITAS PERUSAHAAN JASA KONSTRUKSI PUBLIK DI INDONESIA PERIODE 2018-2022 FAKTOR-FAKTOR DALAM MEMBENTUK HARGA PROPERTI DI SURABAYA PENGARUH PANDEMI TERHADAP PROFITABILITAS PERUSAHAAN BAJA PENGARUH PANDEMI COVID-19 TERHADAP PERFORMA FINANSIAL PADA PERUSAHAAN PROPERTI, KONSTRUKSI DAN REAL ESTATE YANG TERDAFTAR DI BURSA EFEK INDONESIA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1