Exact Three-Dimensional Estimation in Blind Super-Resolution via Convex Optimization

Mohamed A. Suliman, Wei Dai
{"title":"Exact Three-Dimensional Estimation in Blind Super-Resolution via Convex Optimization","authors":"Mohamed A. Suliman, Wei Dai","doi":"10.1109/CISS.2019.8692930","DOIUrl":null,"url":null,"abstract":"In this work, we propose a general mathematical framework for blind three-dimensional super-resolution theory that recovers the continuous shifts and the amplitudes in a mixture of unknown waveforms upon using the received signal. We prove that the three-dimensional shifts, the amplitudes, and the unknown waveforms can all be recovered precisely and with high probability via convex programming when the number of the observed samples obeys certain complexity bound. This exact recovery holds provided that the shifts are sufficiently separated and that the unknown waveforms lie in a common known low-dimensional subspace that satisfies certain assumptions.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we propose a general mathematical framework for blind three-dimensional super-resolution theory that recovers the continuous shifts and the amplitudes in a mixture of unknown waveforms upon using the received signal. We prove that the three-dimensional shifts, the amplitudes, and the unknown waveforms can all be recovered precisely and with high probability via convex programming when the number of the observed samples obeys certain complexity bound. This exact recovery holds provided that the shifts are sufficiently separated and that the unknown waveforms lie in a common known low-dimensional subspace that satisfies certain assumptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于凸优化的盲超分辨精确三维估计
在这项工作中,我们提出了一个盲三维超分辨率理论的通用数学框架,该理论可以在使用接收信号时恢复未知波形混合物中的连续位移和振幅。我们证明了当观测样本的数量服从一定的复杂度界限时,通过凸规划可以精确地、高概率地恢复三维位移、振幅和未知波形。如果位移足够分离,并且未知波形位于满足某些假设的已知低维子空间中,则这种精确的恢复是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prospect Theoretical Extension of a Communication Game Under Jamming Smoothed First-order Algorithms for Expectation-valued Constrained Problems Secure Key Generation for Distributed Inference in IoT Invited Presentation Exponential Error Bounds and Decoding Complexity for Block Codes Constructed by Unit Memory Trellis Codes of Branch Length Two Deep learning to detect catheter tips in vivo during photoacoustic-guided catheter interventions : Invited Presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1