Trend analysis of time-series phenology derived from satellite data

B. Reed, J.F. Brown
{"title":"Trend analysis of time-series phenology derived from satellite data","authors":"B. Reed, J.F. Brown","doi":"10.1109/AMTRSI.2005.1469863","DOIUrl":null,"url":null,"abstract":"Remote sensing information has been used in studies of the seasonal dynamics (phenology) of the land surface for the past 15 years. While our understanding of remote sensing phenology is still in development, it is regarded as a key to understanding land surface processes over large areas. Repeat observations from satellite-borne multispectral sensors provide a mechanism to move from plant-specific to regional scale studies of phenology. In addition, we now have sufficient time-series (since 1982 at 8-km resolution covering the globe and since 1989 at 1-km resolution over the conterminous US) to study seasonal and interannual trends from satellite data. Phenology metrics including start of season, end of season, duration of season, and seasonally integrated greenness were derived from 8 km AVHRR data over North America spanning the years 1982-2003. Trend analysis was performed on the annual summaries of the metrics to determine areas with increasing or decreasing trends for the time period under study. Results show only small areas of changing start of season, but the end of season is coming later over well defined areas of New England and SE Canada, principally as a result of land use changes. The total greenness metric is most striking at the shrub/tundra boundary of North America, indicating increasing vegetation vigor or possible vegetation conversion as a result of warming.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"390 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Remote sensing information has been used in studies of the seasonal dynamics (phenology) of the land surface for the past 15 years. While our understanding of remote sensing phenology is still in development, it is regarded as a key to understanding land surface processes over large areas. Repeat observations from satellite-borne multispectral sensors provide a mechanism to move from plant-specific to regional scale studies of phenology. In addition, we now have sufficient time-series (since 1982 at 8-km resolution covering the globe and since 1989 at 1-km resolution over the conterminous US) to study seasonal and interannual trends from satellite data. Phenology metrics including start of season, end of season, duration of season, and seasonally integrated greenness were derived from 8 km AVHRR data over North America spanning the years 1982-2003. Trend analysis was performed on the annual summaries of the metrics to determine areas with increasing or decreasing trends for the time period under study. Results show only small areas of changing start of season, but the end of season is coming later over well defined areas of New England and SE Canada, principally as a result of land use changes. The total greenness metric is most striking at the shrub/tundra boundary of North America, indicating increasing vegetation vigor or possible vegetation conversion as a result of warming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卫星数据的时间序列物候趋势分析
近15年来,遥感信息已被用于陆地表面的季节动态(物候学)研究。虽然我们对遥感物候学的理解仍处于发展阶段,但它被认为是了解大面积陆地表面过程的关键。星载多光谱传感器的重复观测提供了一种机制,使物候研究从植物特异性转向区域尺度。此外,我们现在有足够的时间序列(1982年以来覆盖全球的8公里分辨率和1989年以来覆盖美国的1公里分辨率)来研究卫星数据的季节和年际趋势。物候指标包括季节开始、季节结束、季节持续时间和季节综合绿度,这些指标来自1982-2003年北美8公里AVHRR数据。对指标的年度摘要进行趋势分析,以确定研究期间增加或减少趋势的领域。结果显示,只有一小部分地区的季节开始发生了变化,但在新英格兰和加拿大东南部的明确地区,季节结束的时间要晚一些,这主要是土地利用变化的结果。总绿度指标在北美灌木/冻土带边界最为显著,表明由于气候变暖,植被活力增加或可能发生植被转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mined sand dune revegetation sequence in Myall Lakes, N.S.W., Australia Temporal signatures and harmonic analysis of natural and anthropogenic disturbances of forested landscapes: a case study in the Yellowstone region Development of indicators of burning efficiency based on time series of SPOT VEGETATION data Multitemporal analysis of NDVI and land surface temperature for modeling the probability of forest fire occurrence in central Mexico Post-classification digital change detection analysis of a temperate forest in the southwest basin of Mexico City, in a 16-year span
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1