Multi-label Classification Using Ensembles of Pruned Sets

J. Read, B. Pfahringer, G. Holmes
{"title":"Multi-label Classification Using Ensembles of Pruned Sets","authors":"J. Read, B. Pfahringer, G. Holmes","doi":"10.1109/ICDM.2008.74","DOIUrl":null,"url":null,"abstract":"This paper presents a pruned sets method (PS) for multi-label classification. It is centred on the concept of treating sets of labels as single labels. This allows the classification process to inherently take into account correlations between labels. By pruning these sets, PS focuses only on the most important correlations, which reduces complexity and improves accuracy. By combining pruned sets in an ensemble scheme (EPS), new label sets can be formed to adapt to irregular or complex data. The results from experimental evaluation on a variety of multi-label datasets show that [E]PS can achieve better performance and train much faster than other multi-label methods.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"432","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 432

Abstract

This paper presents a pruned sets method (PS) for multi-label classification. It is centred on the concept of treating sets of labels as single labels. This allows the classification process to inherently take into account correlations between labels. By pruning these sets, PS focuses only on the most important correlations, which reduces complexity and improves accuracy. By combining pruned sets in an ensemble scheme (EPS), new label sets can be formed to adapt to irregular or complex data. The results from experimental evaluation on a variety of multi-label datasets show that [E]PS can achieve better performance and train much faster than other multi-label methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于剪枝集集合的多标签分类
提出了一种多标签分类的剪枝集方法。它集中于将标签集视为单个标签的概念。这允许分类过程固有地考虑标签之间的相关性。通过修剪这些集合,PS只关注最重要的相关性,从而降低了复杂性并提高了准确性。通过在集成方案(EPS)中组合剪接集,可以形成新的标签集以适应不规则或复杂的数据。在多种多标签数据集上的实验评估结果表明,[E]PS可以获得比其他多标签方法更好的性能和更快的训练速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1