Diseased tissue area detection and delimitation, by fusion between finite difference methods and textural analysis

A. Mitrea, S. Nedevschi, D. Mitrea, P. Mitrea, R. Badea
{"title":"Diseased tissue area detection and delimitation, by fusion between finite difference methods and textural analysis","authors":"A. Mitrea, S. Nedevschi, D. Mitrea, P. Mitrea, R. Badea","doi":"10.1109/AQTR.2014.6857884","DOIUrl":null,"url":null,"abstract":"The basic goals of this paper target on the development and implementation of algorithms which provide the energy-minimizing snakes in parametric form, then in applying them to textural analysis based medical diagnosis. In order to derive these algorithms, we focus on Finite Differences Methods (Explicit and Crank-Nicolson Finite Difference Schemes), widely used in medical image processing applications. We examine the consistency, stability, and convergence rate, proving their increased quality able to provide maximum accuracy when determining the diseased anatomic tissue delimitation in the context of medical images.","PeriodicalId":297141,"journal":{"name":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2014.6857884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The basic goals of this paper target on the development and implementation of algorithms which provide the energy-minimizing snakes in parametric form, then in applying them to textural analysis based medical diagnosis. In order to derive these algorithms, we focus on Finite Differences Methods (Explicit and Crank-Nicolson Finite Difference Schemes), widely used in medical image processing applications. We examine the consistency, stability, and convergence rate, proving their increased quality able to provide maximum accuracy when determining the diseased anatomic tissue delimitation in the context of medical images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将有限差分法与纹理分析法相结合,对病变组织区域进行检测和划分
本文的基本目标是开发和实现以参数形式提供能量最小化蛇的算法,然后将其应用于基于纹理分析的医学诊断。为了推导这些算法,我们重点研究了在医学图像处理应用中广泛使用的有限差分方法(显式和Crank-Nicolson有限差分格式)。我们检查的一致性,稳定性和收敛率,证明其提高的质量能够提供最大的准确性时,确定在医学图像的背景下病变解剖组织的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Criteria for the localization of the monophase fault in medium voltage industrial networks with an isolated neutral Industrial application of micro geometrical cutting edge optimization for solid carbide boring tools Synthesis of train traffic control system with evolutionary computing Active disturbance rejection controller for a separation column DSS for operation of the lateral reservoirs during flood period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1