Hand Gesture Recognition for Doors with Neural Network

Hyunsang Ahn, Jun Sung Kim, J. Shim, Jin Suk Kim
{"title":"Hand Gesture Recognition for Doors with Neural Network","authors":"Hyunsang Ahn, Jun Sung Kim, J. Shim, Jin Suk Kim","doi":"10.1145/3129676.3129725","DOIUrl":null,"url":null,"abstract":"In this paper we propose a hand gesture recognition system for door opening. Because the usage of door knobs and the way of opening doors are similar worldwide, people will naturally do similar actions without special promise when opening the door. When a user wears a smart watch, it is possible to perform movements more natural than the movement at the situation with holding a smartphone in hand. We used an accelerometer embedded in a smart watch to collect hand gesture data, which opens each of three types of door, hinged, slide, and shutter. We preprocessed the raw data with two steps. We trimmed the data and normalized trimmed data using akima spline for multi-layer perceptron (MLP). Also, we used MLP to classify the preprocessed hand gesture data in our system.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129676.3129725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose a hand gesture recognition system for door opening. Because the usage of door knobs and the way of opening doors are similar worldwide, people will naturally do similar actions without special promise when opening the door. When a user wears a smart watch, it is possible to perform movements more natural than the movement at the situation with holding a smartphone in hand. We used an accelerometer embedded in a smart watch to collect hand gesture data, which opens each of three types of door, hinged, slide, and shutter. We preprocessed the raw data with two steps. We trimmed the data and normalized trimmed data using akima spline for multi-layer perceptron (MLP). Also, we used MLP to classify the preprocessed hand gesture data in our system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的门手势识别
本文提出了一种用于开门的手势识别系统。由于门把手的用法和开门的方式在世界范围内是相似的,所以人们在开门的时候自然会做出类似的动作,没有特别的承诺。佩戴智能手表时,可以做出比拿着智能手机时更自然的动作。我们使用嵌入在智能手表中的加速计来收集手势数据,它可以打开三种类型的门,铰链,滑动和快门。我们用两个步骤对原始数据进行预处理。我们使用akima样条对多层感知器(MLP)的数据进行裁剪和归一化。此外,我们还使用MLP对系统中预处理过的手势数据进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Extrinsic Depth Camera Calibration Method for Narrow Field of View Color Camera Motion Mode Recognition for Traffic Safety in Campus Guiding Application Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study PerfNet Road Surface Profiling based on Artificial-Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1