Spectrum estimation of two-dimensional signals via the Radon transform

R. Easton
{"title":"Spectrum estimation of two-dimensional signals via the Radon transform","authors":"R. Easton","doi":"10.1109/MDSP.1989.97047","DOIUrl":null,"url":null,"abstract":"Summary form only given. The Radon transform has been applied to spectrum estimation of noisy 2-D signals. Estimation of the spectrum of noisy temporal signals is a classic signal processing problem, and a number of estimation algorithms have been developed. These include periodograms, the Blackman-Tukey method, and autoregressive moving average (ARMA) models. Extension of the first two algorithms to multidimensional signals is straightforward. However, the additional available degrees of freedom affect the applicability of ARMA models to multidimensional problems. It has been demonstrated that standard 1-D ARMA models can be applied to the individual projections and combined to estimate the 2-D spectrum. Limitations of the algorithm have been explored.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. The Radon transform has been applied to spectrum estimation of noisy 2-D signals. Estimation of the spectrum of noisy temporal signals is a classic signal processing problem, and a number of estimation algorithms have been developed. These include periodograms, the Blackman-Tukey method, and autoregressive moving average (ARMA) models. Extension of the first two algorithms to multidimensional signals is straightforward. However, the additional available degrees of freedom affect the applicability of ARMA models to multidimensional problems. It has been demonstrated that standard 1-D ARMA models can be applied to the individual projections and combined to estimate the 2-D spectrum. Limitations of the algorithm have been explored.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Radon变换的二维信号频谱估计
只提供摘要形式。Radon变换已被应用于二维噪声信号的频谱估计。噪声时域信号的频谱估计是一个经典的信号处理问题,目前已经开发了许多估计算法。这些方法包括周期图、Blackman-Tukey方法和自回归移动平均(ARMA)模型。将前两种算法扩展到多维信号是很简单的。然而,额外的可用自由度影响了ARMA模型对多维问题的适用性。结果表明,标准的一维ARMA模型可以应用于单个投影,也可以组合用于估计二维光谱。本文探讨了算法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A filtering approach to the two-dimensional volume conductor forward and inverse problems A cross-correlation approach to astronomical speckle imaging A new robust method for 2-D sinusoidal frequency estimation Fast progressive reconstruction of a transformed image by the Hartley method Adaptive filter for processing of multichannel nonstationary seismic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1