Loaded and unloaded foot movement differentiation using chest mounted accelerometer signatures

C. Clements, Derek Moody, Adam W. Potter, J. Seay, R. Fellin, M. Buller
{"title":"Loaded and unloaded foot movement differentiation using chest mounted accelerometer signatures","authors":"C. Clements, Derek Moody, Adam W. Potter, J. Seay, R. Fellin, M. Buller","doi":"10.1109/BSN.2013.6575524","DOIUrl":null,"url":null,"abstract":"Heavy loads often subject foot soldiers and first-responders to increased risk musculoskeletal injury (MSI). Identifying excessive loads in real-time could help identify when soldiers are at greater risk of MSI. Using Principal Component Analysis (PCA) we derived a loaded (>35 kg) versus unloaded Naïve Bayesian classification model from 22 male Soldiers (age 20 ± 3.5 yrs, height 1.76 ± 0.09 m and weight 83 ± 13 kg). Using seven-fold cross validation we demonstrated that using only one feature our model accurately classifies heavily loaded versus unloaded over 90% of the time. This technique lends itself to use in real time accelerometry sensors and shows promise for more complex gait analysis.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Heavy loads often subject foot soldiers and first-responders to increased risk musculoskeletal injury (MSI). Identifying excessive loads in real-time could help identify when soldiers are at greater risk of MSI. Using Principal Component Analysis (PCA) we derived a loaded (>35 kg) versus unloaded Naïve Bayesian classification model from 22 male Soldiers (age 20 ± 3.5 yrs, height 1.76 ± 0.09 m and weight 83 ± 13 kg). Using seven-fold cross validation we demonstrated that using only one feature our model accurately classifies heavily loaded versus unloaded over 90% of the time. This technique lends itself to use in real time accelerometry sensors and shows promise for more complex gait analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加载和卸载脚运动区分使用胸部安装的加速度计签名
重负荷经常使步兵和急救人员增加肌肉骨骼损伤(MSI)的风险。实时识别过度负荷可以帮助识别士兵何时面临更大的MSI风险。通过主成分分析(PCA),我们建立了22名男性士兵(年龄20±3.5岁,身高1.76±0.09 m,体重83±13 kg)的加载(>35 kg)与卸载(>35 kg) Naïve贝叶斯分类模型。通过七重交叉验证,我们证明了仅使用一个特征,我们的模型就能在90%的时间内准确地对重负载和卸载进行分类。这项技术可以用于实时加速度计传感器,并有望用于更复杂的步态分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-person vision-based head detector for markerless human motion capture Towards estimation of front-crawl energy expenditure using the wearable aquatic movement analysis system (WAMAS) A study on instance-based learning with reduced training prototypes for device-context-independent activity recognition on a mobile phone A low power miniaturized CMOS-based continuous glucose monitoring system Multi-channel pulse oximetry for wearable physiological monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1