Comparison of Sentiment Analysis on Auto-Summarized Text & Original Text using various Summarization Techniques

P. Kandpal, Yash Wadkar, Harsh Attri, Siddharth Bhorge
{"title":"Comparison of Sentiment Analysis on Auto-Summarized Text & Original Text using various Summarization Techniques","authors":"P. Kandpal, Yash Wadkar, Harsh Attri, Siddharth Bhorge","doi":"10.1109/PuneCon50868.2020.9362395","DOIUrl":null,"url":null,"abstract":"In today’s day & age Text Summarization and Sentiment Analysis add lot of value to businesses and other organizations. Sentiment Analysis can help a business get an idea about their product and gather meaningful feedback from customers. And auto-text summarization helps in articulating the important points from a large data-set, doing so can make the viewers/readers get a quicker idea about that data-set, this data-set can be a large document, a blog or an article. This paper presents a new method of combining the concepts of Sentiment Analysis and Auto-Text Summarization so that content-writers can enhance the quality of their manuscript. In this research work, certain observations have been made which can help in analyzing the polarity and subjectivity of the summarized text using various summarizers. Businesses and other organizations can use this technique to enhance their online content and intrigue viewers or readers by creating a better digital content ecosystem.","PeriodicalId":368862,"journal":{"name":"2020 IEEE Pune Section International Conference (PuneCon)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pune Section International Conference (PuneCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PuneCon50868.2020.9362395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In today’s day & age Text Summarization and Sentiment Analysis add lot of value to businesses and other organizations. Sentiment Analysis can help a business get an idea about their product and gather meaningful feedback from customers. And auto-text summarization helps in articulating the important points from a large data-set, doing so can make the viewers/readers get a quicker idea about that data-set, this data-set can be a large document, a blog or an article. This paper presents a new method of combining the concepts of Sentiment Analysis and Auto-Text Summarization so that content-writers can enhance the quality of their manuscript. In this research work, certain observations have been made which can help in analyzing the polarity and subjectivity of the summarized text using various summarizers. Businesses and other organizations can use this technique to enhance their online content and intrigue viewers or readers by creating a better digital content ecosystem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用各种摘要技术的自动摘要文本与原始文本情感分析的比较
在当今时代,文本摘要和情感分析为企业和其他组织增加了很多价值。情感分析可以帮助企业了解他们的产品,并从客户那里收集有意义的反馈。自动文本摘要有助于阐明大型数据集中的要点,这样做可以使观看者/读者更快地了解该数据集,该数据集可以是大型文档,博客或文章。本文提出了一种将情感分析和文本自动摘要相结合的新方法,以提高内容编写者的稿件质量。在本研究工作中,我们观察到一些现象,这些现象有助于分析使用不同的摘要器所总结的文本的极性和主体性。企业和其他组织可以使用这种技术,通过创建一个更好的数字内容生态系统来提高他们的在线内容和吸引观众或读者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulmonary CT Images Segmentation using CNN and UNet Models of Deep Learning Feature-Based Landslide Susceptibility and Hazard Zonation Maps using Fuzzy Overlay Analysis Impact of Driving Style on Battery Life of the Electric Vehicle Face and Palmprint Biometric Recognition by using Weighted Score Fusion Technique Nature of CSF based on Beating Time in Fibre Reinforced Cotton Rag
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1