Binomial splitting Gaussian mixture implementation of the unscented Kalman probability hypothesis density filter

Peiliang Jing, Ruibin Tu, Shiyou Xu, Zengping Chen
{"title":"Binomial splitting Gaussian mixture implementation of the unscented Kalman probability hypothesis density filter","authors":"Peiliang Jing, Ruibin Tu, Shiyou Xu, Zengping Chen","doi":"10.1109/IRS.2016.7497284","DOIUrl":null,"url":null,"abstract":"In this work, we present a binomial splitting Gaussian mixture unscented Kalman probability hypothesis density (BSGM-UKPHD) filter. The BSGM-UKPHD filter applies a binomial splitting strategy to the original Gaussian mixture unscented Kalman probability hypothesis density (GM-UKPHD) filter, to gain performance promotion when the measurement function is nonlinear. The binomial splitting approximates every Gaussian component of the predicted probability hypothesis density (PHD) with a sum of weighted Gaussian distributions that have smaller covariance. Thus the state update of the nonlinear measurements will cause smaller errors. The binomial splitting preserves the mean and covariance of the original Gaussian distribution, and uses weights from the standardized binomial distribution. Simulation results show that, the proposed BSGM-UKPHD filter outperforms the GM-UKPHD filter and the Gaussian mixture extended Kalman PHD (GM-EKPHD) filter.","PeriodicalId":346680,"journal":{"name":"2016 17th International Radar Symposium (IRS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRS.2016.7497284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we present a binomial splitting Gaussian mixture unscented Kalman probability hypothesis density (BSGM-UKPHD) filter. The BSGM-UKPHD filter applies a binomial splitting strategy to the original Gaussian mixture unscented Kalman probability hypothesis density (GM-UKPHD) filter, to gain performance promotion when the measurement function is nonlinear. The binomial splitting approximates every Gaussian component of the predicted probability hypothesis density (PHD) with a sum of weighted Gaussian distributions that have smaller covariance. Thus the state update of the nonlinear measurements will cause smaller errors. The binomial splitting preserves the mean and covariance of the original Gaussian distribution, and uses weights from the standardized binomial distribution. Simulation results show that, the proposed BSGM-UKPHD filter outperforms the GM-UKPHD filter and the Gaussian mixture extended Kalman PHD (GM-EKPHD) filter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二项分裂高斯混合实现无气味卡尔曼概率假设密度滤波
在这项工作中,我们提出了一个二项分裂高斯混合无气味卡尔曼概率假设密度(BSGM-UKPHD)滤波器。BSGM-UKPHD滤波器对原高斯混合无气味卡尔曼概率假设密度(GM-UKPHD)滤波器采用二项分裂策略,在测量函数为非线性时获得性能提升。二项分裂用协方差较小的加权高斯分布的和逼近预测概率假设密度(PHD)的每个高斯分量。因此,非线性测量的状态更新将导致较小的误差。二项分裂保留了原始高斯分布的均值和协方差,并使用了标准化二项分布的权重。仿真结果表明,所提出的BSGM-UKPHD滤波器优于GM-UKPHD滤波器和高斯混合扩展卡尔曼PHD (GM-EKPHD)滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Doppler spectrum segmentation of radar sea clutter by mean-shift and information geometry metric Carrier- and Doppler-tunable FPGA-based active reflector for radar calibration Experimental measurement of time difference of arrival Investigation on radar-based applications for mini-UAS and MAVs Analysis of the objects images on the sea using Dempster-Shafer theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1