Bags of phrases with codebooks alignment for near duplicate image detection

MiFor '10 Pub Date : 2010-10-29 DOI:10.1145/1877972.1877991
S. Battiato, G. Farinella, G. Guarnera, Tony Meccio, G. Puglisi, D. Ravì, Rosetta Rizzo
{"title":"Bags of phrases with codebooks alignment for near duplicate image detection","authors":"S. Battiato, G. Farinella, G. Guarnera, Tony Meccio, G. Puglisi, D. Ravì, Rosetta Rizzo","doi":"10.1145/1877972.1877991","DOIUrl":null,"url":null,"abstract":"Image retrieval from large databases, such as popular social networks, collections of surveillance images and videos, or digital investigation archives, is a very important task for a number of applications. In digital investigation, hashing techniques are commonly used to index large quantities of images to detect copies from different archives. In the last few years, a number of image hashing techniques based on the Bags of Visual Words paradigm have been proposed. Recently, this paradigm has been augmented by using multiple descriptors (Bags of Visual Phrases) to exploit the coherence between different feature spaces. In this paper we propose to further improve the Bags of Visual Phrases approach exploiting the coherence between feature spaces not only in the image representation, but also in the codebooks generation. Experiments performed on real and synthetic near duplicate image datasets show the effectiveness of the proposed approach, which outperforms the original Bags of Visual Phrases approach.","PeriodicalId":355677,"journal":{"name":"MiFor '10","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MiFor '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877972.1877991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Image retrieval from large databases, such as popular social networks, collections of surveillance images and videos, or digital investigation archives, is a very important task for a number of applications. In digital investigation, hashing techniques are commonly used to index large quantities of images to detect copies from different archives. In the last few years, a number of image hashing techniques based on the Bags of Visual Words paradigm have been proposed. Recently, this paradigm has been augmented by using multiple descriptors (Bags of Visual Phrases) to exploit the coherence between different feature spaces. In this paper we propose to further improve the Bags of Visual Phrases approach exploiting the coherence between feature spaces not only in the image representation, but also in the codebooks generation. Experiments performed on real and synthetic near duplicate image datasets show the effectiveness of the proposed approach, which outperforms the original Bags of Visual Phrases approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短语袋与码本对齐近重复图像检测
从大型数据库中检索图像,例如流行的社交网络,监控图像和视频的集合,或数字调查档案,对于许多应用来说是一项非常重要的任务。在数字调查中,哈希技术通常用于索引大量图像以检测来自不同档案的副本。在过去的几年里,许多基于视觉词袋范式的图像哈希技术被提出。最近,这种模式被使用多个描述符(视觉短语袋)来扩展,以利用不同特征空间之间的一致性。在本文中,我们提出进一步改进视觉短语袋方法,不仅在图像表示中,而且在码本生成中利用特征空间之间的一致性。在真实和合成的近重复图像数据集上进行的实验表明,该方法的有效性优于原始的视觉短语袋方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
When multimedia meets surveillance and forensics in people security Privacy preserving video surveillance using pedestrian tracking mechanism A game-theoretic system security design for the visible watermarking Videntifier" Forensic: large-scale video identification in practice Imputing human descriptions in semantic biometrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1