An efficient neural approach to economic load dispatch in power systems

I. D. da Silva, L. Nepomuceno
{"title":"An efficient neural approach to economic load dispatch in power systems","authors":"I. D. da Silva, L. Nepomuceno","doi":"10.1109/PESS.2001.970255","DOIUrl":null,"url":null,"abstract":"A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements The ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization The neural networks applied in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points The internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible equilibrium points. A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.","PeriodicalId":273578,"journal":{"name":"2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESS.2001.970255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements The ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization The neural networks applied in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points The internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible equilibrium points. A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电力系统负荷经济调度的一种有效神经网络方法
本文提出了一种求解电力系统负荷经济调度问题的神经网络方法。基于人工神经网络的系统由于使用了大量的简单处理单元和这些单元之间的高度连通性,具有很高的计算率,神经网络实现一些复杂非线性函数的能力使其对系统优化具有吸引力,文献中报道的应用于经济负荷调度的神经网络有时不能收敛于可行平衡点利用有效子空间技术对Hopfield网络进行了计算,这些参数保证了网络收敛到可行平衡点。经济负荷调度问题的解对应于电网的平衡点。仿真结果和与其他神经方法的比较分析表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A reliability insurance scheme for the electricity distribution grid The surrogate worth trade off analysis for power system operation in electricity markets Feasibility of a DC intertie for Sitka-Kake-Petersburg interconnection Parameters that influence power quality on industrial frequency AC traction systems Evaluation of retail electricity supply contracts in deregulated environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1