Stochastic modelling of Lake Malawi Engraulicypris sardella (Gunther, 1868) catch fluctuation

R. Makwinja, W. Singini, E. Kaunda, F. Kapute, M. M'balaka
{"title":"Stochastic modelling of Lake Malawi Engraulicypris sardella (Gunther, 1868) catch fluctuation","authors":"R. Makwinja, W. Singini, E. Kaunda, F. Kapute, M. M'balaka","doi":"10.5897/IJFA2017.0642","DOIUrl":null,"url":null,"abstract":"Lake Malawi continues experiencing serious depletion of most valuable fish species. Presently, commercial and artisanal fishery are forced to target less valuable fish species. Evidently, economic importance of Engraulicypris sardella in Malawi cannot be negated as it currently contributes over 70% of the total annual landings. However, such highest contribution could be a sign of harvesting pressure. Therefore, as the species continues being increasingly exploited, the development of scientific understanding through application of stochastic models is particularly relevant for present and future policy making and formulation of strategies to sustain the resource in the lake. Thus, the study was designed to forecast the annual catch trend of E. sardella from Lake Malawi. The study used time series data from 1976 to 2015 period obtained from Monkey Bay Fisheries Research Station of the Malawi Fisheries Department. The study adopted Box-Jenkins procedures to identify appropriate Autoregressive Integrated Moving Average (ARIMA) model, estimate parameters in ARIMA model and conducting diagnostic check. The study findings showed that ARIMA (2,1,1) model had least Normalized Bayesian Information Criterion (NBIC) value making it a appropriate model for the study. ARIMA (2,1,1) model  showed  that E. sardella  annual catches are positively fluctuating. Again, the model  predicted that E. sardella annual catches from Lake Malawi will increase from the annual total landings  of 71,778.47 metric tons to 104,261.20 metric tons in the next 10 years (ceteris paribus).  \n \n Key words: Box-Jenkins, Engraulicypris sardella, Lake Malawi, autoregressive integrated moving average (ARIMA), Modelling, Usipa, Stochastic.","PeriodicalId":415026,"journal":{"name":"International Journal of Fisheries and Aquaculture","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fisheries and Aquaculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/IJFA2017.0642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Lake Malawi continues experiencing serious depletion of most valuable fish species. Presently, commercial and artisanal fishery are forced to target less valuable fish species. Evidently, economic importance of Engraulicypris sardella in Malawi cannot be negated as it currently contributes over 70% of the total annual landings. However, such highest contribution could be a sign of harvesting pressure. Therefore, as the species continues being increasingly exploited, the development of scientific understanding through application of stochastic models is particularly relevant for present and future policy making and formulation of strategies to sustain the resource in the lake. Thus, the study was designed to forecast the annual catch trend of E. sardella from Lake Malawi. The study used time series data from 1976 to 2015 period obtained from Monkey Bay Fisheries Research Station of the Malawi Fisheries Department. The study adopted Box-Jenkins procedures to identify appropriate Autoregressive Integrated Moving Average (ARIMA) model, estimate parameters in ARIMA model and conducting diagnostic check. The study findings showed that ARIMA (2,1,1) model had least Normalized Bayesian Information Criterion (NBIC) value making it a appropriate model for the study. ARIMA (2,1,1) model  showed  that E. sardella  annual catches are positively fluctuating. Again, the model  predicted that E. sardella annual catches from Lake Malawi will increase from the annual total landings  of 71,778.47 metric tons to 104,261.20 metric tons in the next 10 years (ceteris paribus).  Key words: Box-Jenkins, Engraulicypris sardella, Lake Malawi, autoregressive integrated moving average (ARIMA), Modelling, Usipa, Stochastic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马拉维湖Engraulicypris sardella (Gunther, 1868)渔获波动的随机模拟
马拉维湖继续经历着最宝贵鱼类物种的严重枯竭。目前,商业和手工渔业被迫以价值较低的鱼类为目标。显然,Engraulicypris sardella在马拉维的经济重要性是不可否认的,因为它目前贡献了每年总登陆人数的70%以上。然而,如此高的贡献可能是收获压力的标志。因此,随着该物种的不断开发,通过应用随机模型来发展科学认识对于当前和未来的政策制定和制定维持湖泊资源的策略尤为重要。因此,本研究的目的是预测马拉维湖萨尔德拉e.s ardella的年捕捞趋势。该研究使用了马拉维渔业局猴湾渔业研究站1976年至2015年期间的时间序列数据。采用Box-Jenkins程序识别合适的自回归综合移动平均(ARIMA)模型,估计ARIMA模型中的参数并进行诊断检查。研究结果表明,ARIMA(2,1,1)模型的归一化贝叶斯信息准则(NBIC)值最小,适合本研究。ARIMA(2,1,1)模型显示,沙德拉年渔获量呈正波动。该模型再次预测,在未来10年,马拉维湖的萨尔德拉e.s ardella年捕获量将从年总捕获量71,778.47公吨增加到104,261.20公吨(其他条件相同)。关键词:Box-Jenkins, Engraulicypris sardella,马拉维湖,自回归综合移动平均(ARIMA),建模,Usipa,随机
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of growth rates, condition factors and natural mortality of Oreochromis niloticus fish from culture fisheries and capture fisheries at Lake Kariba, Zambia Study on the Green Mussel, Perna viridis (L.) distribution, artificial spat collection, and raft culture along the Karwar Coast, Eastern Arabian Sea Trophic relationship of fish species in Ogbese River, Ado-Ekiti, South-Western, Nigeria Process conditions for successful low-cost extrusion of floating fish feed granules for African catfish, Clarias gariepinus in West Africa Assessing the impact of a budget cage technology on Nile Tilapia (Oreochromis niloticus) production in the Bontanga, Golinga and Libga reservoirs in Northern Ghana, Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1