When Spark Meets FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration

Yu-Ting Chen, J. Cong, Zhenman Fang, Jie Lei, Peng Wei
{"title":"When Spark Meets FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration","authors":"Yu-Ting Chen, J. Cong, Zhenman Fang, Jie Lei, Peng Wei","doi":"10.1109/FCCM.2016.18","DOIUrl":null,"url":null,"abstract":"FPGA-enabled datacenters have shown great potential for providing performance and energy efficiency improvement, and captured a great amount of attention from both academia and industry. In this paper we aim to answer one key question: how can we efficiently integrate FPGAs into state-of-the-art big-data computing frameworks? Although very important, this problem has not been well studied, especially for the integration of fine-grained FPGA accelerators that have short execution time but will be invoked many times. To provide a generalized methodology and insight for efficient integration, we conduct an in-depth analysis of challenges and corresponding solutions of integration at single-thread, single-node multi-thread, and multi-node levels. With a step-by-step case study for the next-generation DNA sequencing application, we demonstrate how a straightforward integration with 1000x slowdown can be tuned into an efficient integration with 2.6x overall system speedup and 2.4x energy efficiency improvement.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

FPGA-enabled datacenters have shown great potential for providing performance and energy efficiency improvement, and captured a great amount of attention from both academia and industry. In this paper we aim to answer one key question: how can we efficiently integrate FPGAs into state-of-the-art big-data computing frameworks? Although very important, this problem has not been well studied, especially for the integration of fine-grained FPGA accelerators that have short execution time but will be invoked many times. To provide a generalized methodology and insight for efficient integration, we conduct an in-depth analysis of challenges and corresponding solutions of integration at single-thread, single-node multi-thread, and multi-node levels. With a step-by-step case study for the next-generation DNA sequencing application, we demonstrate how a straightforward integration with 1000x slowdown can be tuned into an efficient integration with 2.6x overall system speedup and 2.4x energy efficiency improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当Spark遇到fpga:下一代DNA测序加速的案例研究
支持fpga的数据中心在提供性能和能效改进方面显示出了巨大的潜力,并引起了学术界和工业界的极大关注。在本文中,我们的目标是回答一个关键问题:我们如何有效地将fpga集成到最先进的大数据计算框架中?虽然这个问题非常重要,但目前还没有得到很好的研究,特别是对于执行时间短但会被多次调用的细粒度FPGA加速器的集成。为了提供有效集成的通用方法和见解,我们深入分析了单线程、单节点多线程和多节点级别集成的挑战和相应的解决方案。通过对下一代DNA测序应用程序的逐步案例研究,我们演示了如何将具有1000倍减速的直接集成调整为具有2.6倍整体系统加速和2.4倍能效改进的高效集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial Predicates Evaluation in the Geohash Domain Using Reconfigurable Hardware Two-Hit Filter Synthesis for Genomic Database Search Initiation Interval Aware Resource Sharing for FPGA DSP Blocks Finding Space-Time Stream Permutations for Minimum Memory and Latency Runtime Parameterizable Regular Expression Operators for Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1