Near-far effect on coded slotted ALOHA

Ehsan Ebrahimi Khaleghi, C. Adjih, Amira Alloum, P. Mühlethaler
{"title":"Near-far effect on coded slotted ALOHA","authors":"Ehsan Ebrahimi Khaleghi, C. Adjih, Amira Alloum, P. Mühlethaler","doi":"10.1109/PIMRC.2017.8292692","DOIUrl":null,"url":null,"abstract":"Motivated by scenario requirements for 5G cellular networks, we study one of the candidate protocols for massive random access: the family of random access methods known as Coded Slotted ALOHA (CSA). A recent trend in research has explored aspects of such methods in various contexts, but one aspect has not been fully taken into account: the impact of path loss, which is a major design constraint in long-range wireless networks. In this article, we explore the behavior of CSA, by focusing on the path loss component correlated to the distance to the base station. Path loss provides opportunities for capture, improving the performance of CSA. We revise methods for estimating CSA behavior, provide bounds of performance, and then, focusing on the achievable throughput, we extensively explore the key parameters, and their associated gain (experimentally). Our results shed light on the behavior of the optimal distribution of repetitions in actual wireless networks.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Motivated by scenario requirements for 5G cellular networks, we study one of the candidate protocols for massive random access: the family of random access methods known as Coded Slotted ALOHA (CSA). A recent trend in research has explored aspects of such methods in various contexts, but one aspect has not been fully taken into account: the impact of path loss, which is a major design constraint in long-range wireless networks. In this article, we explore the behavior of CSA, by focusing on the path loss component correlated to the distance to the base station. Path loss provides opportunities for capture, improving the performance of CSA. We revise methods for estimating CSA behavior, provide bounds of performance, and then, focusing on the achievable throughput, we extensively explore the key parameters, and their associated gain (experimentally). Our results shed light on the behavior of the optimal distribution of repetitions in actual wireless networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
编码开槽ALOHA的远近效应
受5G蜂窝网络场景需求的推动,我们研究了大规模随机接入的候选协议之一:被称为编码槽ALOHA (CSA)的随机接入方法家族。最近的研究趋势已经探索了这些方法在各种情况下的各个方面,但有一个方面尚未得到充分考虑:路径损耗的影响,这是远程无线网络的主要设计约束。在本文中,我们通过关注与基站距离相关的路径损耗分量来探索CSA的行为。路径损失为捕获提供了机会,提高了CSA的性能。我们修改了估计CSA行为的方法,提供了性能界限,然后,专注于可实现的吞吐量,我们广泛探索了关键参数及其相关增益(实验)。我们的研究结果揭示了实际无线网络中最优重复分布的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RSSI-based self-localization with perturbed anchor positions Bit precision study of a non-orthogonal iterative detector with FPGA modelling verification Analytical approach to base station sleep mode power consumption and sleep depth Experimental over-the-air testing for coexistence of 4G and a spectrally efficient non-orthogonal signal Secrecy analysis of random wireless networks with multiple eavesdroppers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1