Altitude Analysis of Road Segmentation from UAV Images with DeepLab V3+

Mat Nizam Mahmud, Muhammad Hiszarul Azim, M Fazmi Hisham, M. K. Osman, A. P. Ismail, F. Ahmad, K. A. Ahmad, A. Ibrahim, Azmir Hasnur Rabiani
{"title":"Altitude Analysis of Road Segmentation from UAV Images with DeepLab V3+","authors":"Mat Nizam Mahmud, Muhammad Hiszarul Azim, M Fazmi Hisham, M. K. Osman, A. P. Ismail, F. Ahmad, K. A. Ahmad, A. Ibrahim, Azmir Hasnur Rabiani","doi":"10.1109/ICCSCE54767.2022.9935649","DOIUrl":null,"url":null,"abstract":"DeepLab V3+ semantic segmentation develops road segmentation from UAV images. First, a camera-equipped UAV captures road images from 3 altitudes in Perlis. The images will be resized and augmented to provide additional road images for deep learning model training. Next, images are manually segmented into road and background using CVAT. The DeepLab V3+ with Resnet-18, Resnet-50, and MobileNet V2 backbone network is utilised to segment the road using Matlab. Finally, the suggested method's performance is compared to all backbone network approaches at 3 various altitudes to determine pixel accuracy (PA), mean intersection over union (mIoU), and meanF1-score (meanF1). The study develops an accurate and robust approach for road segmentation from UAV images that road surveyors may employ for inspection and monitoring. This technique might be implemented to identify road cracks and potholes in the future study.","PeriodicalId":346014,"journal":{"name":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE54767.2022.9935649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

DeepLab V3+ semantic segmentation develops road segmentation from UAV images. First, a camera-equipped UAV captures road images from 3 altitudes in Perlis. The images will be resized and augmented to provide additional road images for deep learning model training. Next, images are manually segmented into road and background using CVAT. The DeepLab V3+ with Resnet-18, Resnet-50, and MobileNet V2 backbone network is utilised to segment the road using Matlab. Finally, the suggested method's performance is compared to all backbone network approaches at 3 various altitudes to determine pixel accuracy (PA), mean intersection over union (mIoU), and meanF1-score (meanF1). The study develops an accurate and robust approach for road segmentation from UAV images that road surveyors may employ for inspection and monitoring. This technique might be implemented to identify road cracks and potholes in the future study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DeepLab V3+的无人机图像道路分割高度分析
DeepLab V3+语义分割基于无人机图像进行道路分割。首先,一架装有摄像头的无人机从3个海拔高度拍摄了波斯的道路图像。这些图像将被调整和增强,为深度学习模型训练提供额外的道路图像。接下来,使用CVAT将图像手动分割为道路和背景。采用带Resnet-18、Resnet-50和MobileNet V2骨干网的DeepLab V3+,利用Matlab对道路进行分段。最后,将该方法与所有骨干网方法在3个不同高度的性能进行比较,以确定像素精度(PA)、平均交联(mIoU)和均值f1 -score (meanF1)。该研究开发了一种准确而稳健的方法,用于从无人机图像中分割道路,道路测量师可以使用该方法进行检查和监测。在未来的研究中,这种技术可能被用于识别道路裂缝和坑洼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Enforcements of Wireless Based Matrix LED Message Moving Display by HD-W60 Microcontroller Multilayer Perceptron Optimization of ECG Peaks for Cardiac Abnormality Detection Domestic Trash Classification with Transfer Learning Using VGG16 Telemetry System for Highland Tomato Plants Using Ubidots Platform Systematic Literature Review of Security Control Assessment Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1