A Genetic Algorithm for Source Election in Cooperative Clusters Implementing Network Coding

L. Militano, F. Fitzek, A. Iera, A. Molinaro
{"title":"A Genetic Algorithm for Source Election in Cooperative Clusters Implementing Network Coding","authors":"L. Militano, F. Fitzek, A. Iera, A. Molinaro","doi":"10.1109/ICCW.2010.5503955","DOIUrl":null,"url":null,"abstract":"Reference scenarios of the present research are clusters of cooperating wireless nodes, implementing random linear network coding to enhance the throughput performance of file downloading and information spreading services. In particular, a sub-set of cluster nodes will access, through their cellular link, parts of a file to be exchanged among all cluster members. The paper focus is on the \"source election\" issue. The novelty of the research lies in the main problem constraints, which make it far different from (and more exacting than) traditional cluster head election problems: the source number can cover the whole range of nodes and all the nodes must be considered data destinations. We propose a source election algorithm, only based on the knowledge of the number of nodes, which is fast in converging to either the optimal or, alternatively, a satisfactory sub-optimal solution. In so doing, we exploit a performing genetic algorithm. Its observed behaviour makes us confident that the followed approach can be the winning one in conditions of null/limited awareness of node position and type of relevant available cellular links.","PeriodicalId":422951,"journal":{"name":"2010 IEEE International Conference on Communications Workshops","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2010.5503955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Reference scenarios of the present research are clusters of cooperating wireless nodes, implementing random linear network coding to enhance the throughput performance of file downloading and information spreading services. In particular, a sub-set of cluster nodes will access, through their cellular link, parts of a file to be exchanged among all cluster members. The paper focus is on the "source election" issue. The novelty of the research lies in the main problem constraints, which make it far different from (and more exacting than) traditional cluster head election problems: the source number can cover the whole range of nodes and all the nodes must be considered data destinations. We propose a source election algorithm, only based on the knowledge of the number of nodes, which is fast in converging to either the optimal or, alternatively, a satisfactory sub-optimal solution. In so doing, we exploit a performing genetic algorithm. Its observed behaviour makes us confident that the followed approach can be the winning one in conditions of null/limited awareness of node position and type of relevant available cellular links.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种实现网络编码的协作集群源选择的遗传算法
本研究的参考场景是无线节点集群协作,实现随机线性网络编码,以提高文件下载和信息传播业务的吞吐量性能。特别是,集群节点的子集将通过它们的蜂窝链接访问要在所有集群成员之间交换的文件部分。本文的研究重点是“信息源选择”问题。该研究的新颖之处在于主要问题的约束,这使得它与传统的簇头选举问题有很大的不同(并且比传统的簇头选举问题更严格):源数量可以覆盖整个节点范围,所有节点必须被视为数据目的地。我们提出了一种仅基于节点数量知识的源选择算法,该算法可以快速收敛到最优解或令人满意的次最优解。在这样做的过程中,我们利用了一个执行遗传算法。其观察到的行为使我们相信,在节点位置和相关可用蜂窝链路类型意识为零/有限的情况下,以下方法可能是获胜的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
JENNA: A Jamming Evasive Network-Coding Neighbor-Discovery Algorithm for Cognitive Radio Networks Analysis of Phasor Data Latency in Wide Area Monitoring and Control Systems Dynamic Spectrum Leasing (DSL) in Dynamic Channels Applications of Reinforcement Learning to Cognitive Radio Networks Trust with Social Network Learning in E-Commerce
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1