Traffic-Aware Reliable Scheduling in TSCH Networks for Industry 4.0: A Systematic Mapping Review

IF 34.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Communications Surveys and Tutorials Pub Date : 2023-08-04 DOI:10.1109/COMST.2023.3302157
Abdeldjalil Tabouche;Badis Djamaa;Mustapha Reda Senouci
{"title":"Traffic-Aware Reliable Scheduling in TSCH Networks for Industry 4.0: A Systematic Mapping Review","authors":"Abdeldjalil Tabouche;Badis Djamaa;Mustapha Reda Senouci","doi":"10.1109/COMST.2023.3302157","DOIUrl":null,"url":null,"abstract":"Recently, mission-critical Industrial Internet of Things (IIoT) applications such as system automation, predictive maintenance, and anomaly detection have come into the spotlight of Industry 4.0 thanks to the promised benefits. The IEEE 802.15.4 Time-Slotted Channel Hopping (TSCH) mode, along with the IPv6 over TSCH (6TiSCH) initiative, are two key standards to accommodate the diverse traffic patterns, reliability, latency, and power efficiency needs of such IIoT applications. To manage the allocation of communication resources in TSCH networks, a Scheduling Function (SF) is implemented. Even though scheduling in the IIoT has been the subject of numerous reviews, the potential of taking traffic-awareness into account has not been fully investigated. Motivated by these facts, we classify and analyze, in this systematic mapping review, prominent SFs dealing with traffic-awareness in TSCH networks published between 2012 and 2022. As a result, we provide a multi-dimensional map to identify the current trends in traffic-aware TSCH scheduling and help assess how far a given proposal is supported or contradicted by the empirical evidence in the field. Consequently, we discuss some open challenges that require community attention and point out potential future research directions regarding the design, implementation, and evaluation of new traffic-aware SFs.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"25 4","pages":"2834-2861"},"PeriodicalIF":34.4000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10208136/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, mission-critical Industrial Internet of Things (IIoT) applications such as system automation, predictive maintenance, and anomaly detection have come into the spotlight of Industry 4.0 thanks to the promised benefits. The IEEE 802.15.4 Time-Slotted Channel Hopping (TSCH) mode, along with the IPv6 over TSCH (6TiSCH) initiative, are two key standards to accommodate the diverse traffic patterns, reliability, latency, and power efficiency needs of such IIoT applications. To manage the allocation of communication resources in TSCH networks, a Scheduling Function (SF) is implemented. Even though scheduling in the IIoT has been the subject of numerous reviews, the potential of taking traffic-awareness into account has not been fully investigated. Motivated by these facts, we classify and analyze, in this systematic mapping review, prominent SFs dealing with traffic-awareness in TSCH networks published between 2012 and 2022. As a result, we provide a multi-dimensional map to identify the current trends in traffic-aware TSCH scheduling and help assess how far a given proposal is supported or contradicted by the empirical evidence in the field. Consequently, we discuss some open challenges that require community attention and point out potential future research directions regarding the design, implementation, and evaluation of new traffic-aware SFs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向工业4.0的TSCH网络中基于流量感知的可靠调度:系统映射综述
最近,关键任务的工业物联网(IIoT)应用,如系统自动化、预测性维护和异常检测,由于其承诺的好处,已经成为工业4.0的焦点。IEEE 802.15.4时隙信道跳变(TSCH)模式以及IPv6 over TSCH (6TiSCH)倡议是适应此类IIoT应用的各种流量模式、可靠性、延迟和能效需求的两个关键标准。为了管理TSCH网络中通信资源的分配,调度功能(Scheduling Function, SF)被实现。尽管工业物联网中的调度已经成为众多审查的主题,但考虑到交通意识的潜力尚未得到充分调查。基于这些事实,我们对2012年至2022年期间发表的处理TSCH网络交通意识的杰出sf进行了分类和分析。因此,我们提供了一个多维地图,以确定交通感知的TSCH调度的当前趋势,并帮助评估给定建议在多大程度上得到了该领域经验证据的支持或反对。因此,我们讨论了一些需要社区关注的开放挑战,并指出了未来潜在的研究方向,包括设计、实施和评估新的交通感知安全系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Communications Surveys and Tutorials
IEEE Communications Surveys and Tutorials COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
80.20
自引率
2.50%
发文量
84
审稿时长
6 months
期刊介绍: IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues. A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.
期刊最新文献
Table of Contents Editorial: Third Quarter 2024 IEEE Communications Surveys and Tutorials Evolution of RAN Architectures Toward 6G: Motivation, Development, and Enabling Technologies A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey Wireless Access for V2X Communications: Research, Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1