Support Vector Machines for Multiple Targets Tracking with Sensor Networks

Amina El Gonnouni, S. Pino-Povedano, F. González-Serrano, A. Lyhyaoui
{"title":"Support Vector Machines for Multiple Targets Tracking with Sensor Networks","authors":"Amina El Gonnouni, S. Pino-Povedano, F. González-Serrano, A. Lyhyaoui","doi":"10.1109/NTMS.2008.ECP.93","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of tracking multiple targets trajectories that potentially cross each other. We propose a solution to this problem by using the support vector machines (SVM) to predict the position of the targets from the past history of the measurements. We will predict the dynamic behaviour of the targets using the SVM method, after turning off the sensing mode. By this way, we will avoid wrong measures that might take sensors and which are due to the superposition of physical signals. The simulations results demonstrate the potential advantage of this approach.","PeriodicalId":432307,"journal":{"name":"2008 New Technologies, Mobility and Security","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 New Technologies, Mobility and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTMS.2008.ECP.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we address the problem of tracking multiple targets trajectories that potentially cross each other. We propose a solution to this problem by using the support vector machines (SVM) to predict the position of the targets from the past history of the measurements. We will predict the dynamic behaviour of the targets using the SVM method, after turning off the sensing mode. By this way, we will avoid wrong measures that might take sensors and which are due to the superposition of physical signals. The simulations results demonstrate the potential advantage of this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于传感器网络的多目标跟踪支持向量机
在本文中,我们解决了跟踪可能相互交叉的多个目标轨迹的问题。我们提出了一个解决这个问题的方法,利用支持向量机(SVM)从过去的测量历史中预测目标的位置。在关闭感应模式后,我们将使用支持向量机方法预测目标的动态行为。通过这种方式,我们将避免由于物理信号的叠加而导致的可能需要传感器的错误措施。仿真结果表明了该方法的潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time and Location Based Services with Access Control Link-Based VoIP Aggregation in Mesh Networks Voronoi-Based Sensor Network Engineering for Target Tracking Using Wireless Sensor Networks MASA: End-to-End Data Security in Sensor Networks Using a Mix of Asymmetric and Symmetric Approaches. Mobility Support and Improving GPSR Routing Approach in Vehicular Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1