Performance Evaluation and Acceleration of the QTensor Quantum Circuit Simulator on GPUs

Danylo Lykov, Angela Chen, Huaxuan Chen, Kristopher Keipert, Zheng Zhang, Tom Gibbs, Y. Alexeev
{"title":"Performance Evaluation and Acceleration of the QTensor Quantum Circuit Simulator on GPUs","authors":"Danylo Lykov, Angela Chen, Huaxuan Chen, Kristopher Keipert, Zheng Zhang, Tom Gibbs, Y. Alexeev","doi":"10.1109/QCS54837.2021.00007","DOIUrl":null,"url":null,"abstract":"This work studies the porting and optimization of the tensor network simulator QTensor on GPUs, with the ultimate goal of simulating quantum circuits efficiently at scale on large GPU supercomputers. We implement NumPy, PyTorch, and CuPy backends and benchmark the codes to find the optimal allocation of tensor simulations to either a CPU or a GPU. We also present a dynamic mixed backend to achieve optimal performance. To demonstrate the performance, we simulate QAOA circuits for computing the MaxCut energy expectation. Our method achieves 176× speedup on a GPU over the NumPy baseline on a CPU for the benchmarked QAOA circuits to solve MaxCut problem on a 3-regular graph of size 30 with depth p = 4.","PeriodicalId":432600,"journal":{"name":"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QCS54837.2021.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This work studies the porting and optimization of the tensor network simulator QTensor on GPUs, with the ultimate goal of simulating quantum circuits efficiently at scale on large GPU supercomputers. We implement NumPy, PyTorch, and CuPy backends and benchmark the codes to find the optimal allocation of tensor simulations to either a CPU or a GPU. We also present a dynamic mixed backend to achieve optimal performance. To demonstrate the performance, we simulate QAOA circuits for computing the MaxCut energy expectation. Our method achieves 176× speedup on a GPU over the NumPy baseline on a CPU for the benchmarked QAOA circuits to solve MaxCut problem on a 3-regular graph of size 30 with depth p = 4.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu的QTensor量子电路模拟器的性能评估与加速
本工作研究了张量网络模拟器QTensor在GPU上的移植和优化,最终目标是在大型GPU超级计算机上高效地大规模模拟量子电路。我们实现了NumPy、PyTorch和CuPy后端,并对代码进行基准测试,以找到张量模拟在CPU或GPU上的最佳分配。我们还提出了一个动态混合后端,以实现最佳性能。为了演示性能,我们模拟了QAOA电路来计算MaxCut能量期望。对于基准QAOA电路,我们的方法在CPU上的NumPy基线上实现了176倍的加速,以解决深度p = 4的大小为30的3规则图上的MaxCut问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HybridQ: A Hybrid Simulator for Quantum Circuits Illinois Express Quantum Network for Distributing and Controlling Entanglement on Metro-Scale Scalable Programming Workflows for Validation of Quantum Computers Mapping Constraint Problems onto Quantum Gate and Annealing Devices Large scale multi-node simulations of ℤ2 gauge theory quantum circuits using Google Cloud Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1