{"title":"Raman Spectroscopy in the Analysis of Textile Structures","authors":"D. Puchowicz, M. Cieślak","doi":"10.5772/intechopen.99731","DOIUrl":null,"url":null,"abstract":"Raman spectroscopy as a non-destructive technique is very often used to analyze a historic or forensic material. It is also a very valuable method of testing textile materials, especially modified and functionalized. In the case of textiles, the advantages of this technique is the compatibility inter alia with FTIR, which is helpful in natural fibers identification or to distinguish between isomers and conformers of synthetic fibers. The work shows the possibility of special application of the Raman spectroscopy to the characterization of textile materials after modification and functionalization with nanoparticles. A functionalized textile structure with a metallic surface can provide a good basis for analytical studies using surface enhanced Raman spectroscopy as it was presented on the example of wool, cotton and aramid fibers.","PeriodicalId":176269,"journal":{"name":"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization [Working Title]","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.99731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Raman spectroscopy as a non-destructive technique is very often used to analyze a historic or forensic material. It is also a very valuable method of testing textile materials, especially modified and functionalized. In the case of textiles, the advantages of this technique is the compatibility inter alia with FTIR, which is helpful in natural fibers identification or to distinguish between isomers and conformers of synthetic fibers. The work shows the possibility of special application of the Raman spectroscopy to the characterization of textile materials after modification and functionalization with nanoparticles. A functionalized textile structure with a metallic surface can provide a good basis for analytical studies using surface enhanced Raman spectroscopy as it was presented on the example of wool, cotton and aramid fibers.