Automatic In-Memory Fuzzing with the Assistance of Taint Flow Analysis

Gang Yang, Chao Feng, Xing Zhang, Chaojing Tang
{"title":"Automatic In-Memory Fuzzing with the Assistance of Taint Flow Analysis","authors":"Gang Yang, Chao Feng, Xing Zhang, Chaojing Tang","doi":"10.1109/ICNISC.2017.00047","DOIUrl":null,"url":null,"abstract":"In-memory fuzzing is a research hotspot in the field of vulnerability mining in recent years, due to the high efficiency and lightweight. However its incompleteness, poor robustness, and low automation, make in-memory fuzzing difficult to be applied in the actual vulnerability discovering. In this paper, we combine the taint analysis with in-memory fuzzing, to solve the above problems. And the experiments show that our method can improve the level of automation and robustness, reduce incompleteness effectively.","PeriodicalId":429511,"journal":{"name":"2017 International Conference on Network and Information Systems for Computers (ICNISC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC.2017.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In-memory fuzzing is a research hotspot in the field of vulnerability mining in recent years, due to the high efficiency and lightweight. However its incompleteness, poor robustness, and low automation, make in-memory fuzzing difficult to be applied in the actual vulnerability discovering. In this paper, we combine the taint analysis with in-memory fuzzing, to solve the above problems. And the experiments show that our method can improve the level of automation and robustness, reduce incompleteness effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于污点流分析的自动内存模糊测试
内存模糊以其高效、轻量级的特点成为近年来漏洞挖掘领域的研究热点。但是由于内存模糊的不完备性、鲁棒性差、自动化程度低,使得其难以应用于实际的漏洞发现中。在本文中,我们将污染分析与内存模糊相结合来解决上述问题。实验结果表明,该方法能有效地提高自动化程度和鲁棒性,减少不完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved DV-Hop Localization Algorithm for Wireless Sensor Network Based on TDOA Quantization Joint Task Management in Connected Vehicle Networks by Software-Defined Networking, Computing and Caching Community Detection and Location Recommendation Based on LBSN The Data Crawling and Hotspot Analyze of Social Q&A Site UAV Flight at Low Altitude Based on Binocular Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1