Depth map estimation using census transform for light field cameras

Takayuki Tomioka, Kazu Mishiba, Y. Oyamada, K. Kondo
{"title":"Depth map estimation using census transform for light field cameras","authors":"Takayuki Tomioka, Kazu Mishiba, Y. Oyamada, K. Kondo","doi":"10.1109/ICASSP.2016.7471955","DOIUrl":null,"url":null,"abstract":"Depth estimation for the lense-array type cameras is a challenging problem because of sensor noise and radiometric distortion which is a global brightness change between sub-aperture images caused by a vignetting effect of the micro-lenses. We propose a depth map estimation method which has robustness against the sensor noise and the radiometric distortion. Our method first binarizes sub-aperture images by applying the census transform. Next, the binarized images are matched by computing the majority operations between corresponding bits and summing up the Hamming distance. An initial map obtained by matching has ambiguity caused by extremely short baselines among sub-aperture images. We refine an initial map by the optimization which uses the assumption that the variations of the depth values in the depth map and of the pixel values in the texture-less objects are similar. Experiments show that our method outperforms the conventional methods.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7471955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Depth estimation for the lense-array type cameras is a challenging problem because of sensor noise and radiometric distortion which is a global brightness change between sub-aperture images caused by a vignetting effect of the micro-lenses. We propose a depth map estimation method which has robustness against the sensor noise and the radiometric distortion. Our method first binarizes sub-aperture images by applying the census transform. Next, the binarized images are matched by computing the majority operations between corresponding bits and summing up the Hamming distance. An initial map obtained by matching has ambiguity caused by extremely short baselines among sub-aperture images. We refine an initial map by the optimization which uses the assumption that the variations of the depth values in the depth map and of the pixel values in the texture-less objects are similar. Experiments show that our method outperforms the conventional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于普查变换的光场相机深度图估计
由于传感器噪声和辐射畸变的存在,透镜阵列相机的深度估计是一个具有挑战性的问题。辐射畸变是由微透镜的渐晕效应引起的子孔径图像之间的全局亮度变化。提出了一种对传感器噪声和辐射失真具有鲁棒性的深度图估计方法。该方法首先利用普查变换对子孔径图像进行二值化处理。接下来,通过计算对应位之间的多数运算并求和汉明距离来匹配二值化后的图像。由于子孔径图像间基线极短,匹配得到的初始地图存在模糊性。我们利用深度图中深度值的变化与无纹理对象中像素值的变化相似的假设,通过优化来优化初始地图。实验表明,该方法优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1