Personalization of food image analysis

Yuto Maruyama, Gamhewage C. de Silva, T. Yamasaki, K. Aizawa
{"title":"Personalization of food image analysis","authors":"Yuto Maruyama, Gamhewage C. de Silva, T. Yamasaki, K. Aizawa","doi":"10.1109/VSMM.2010.5665964","DOIUrl":null,"url":null,"abstract":"This paper presents a method to classify food images by updating the model of Bayesian network incrementally. We have been investigating a “food log” system which makes use of image analysis, and it can automatically detect food images and estimate the food balance (using a simple nutrition model). It also enables users to easily modify the results of the analysis when they contain errors. So far, the system does not make use of the corrections made by the users to improve the performance of classification. In this paper, we propose to incrementally update the classifier based on Baysian network so that the results of analysis will be improved by using the user's corrections. With the incremental updating, the accuracy of food image detection is improved from 89% to 92%.","PeriodicalId":348792,"journal":{"name":"2010 16th International Conference on Virtual Systems and Multimedia","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 16th International Conference on Virtual Systems and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSMM.2010.5665964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper presents a method to classify food images by updating the model of Bayesian network incrementally. We have been investigating a “food log” system which makes use of image analysis, and it can automatically detect food images and estimate the food balance (using a simple nutrition model). It also enables users to easily modify the results of the analysis when they contain errors. So far, the system does not make use of the corrections made by the users to improve the performance of classification. In this paper, we propose to incrementally update the classifier based on Baysian network so that the results of analysis will be improved by using the user's corrections. With the incremental updating, the accuracy of food image detection is improved from 89% to 92%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
个性化食品图像分析
本文提出了一种基于贝叶斯网络模型增量更新的食品图像分类方法。我们一直在研究一种利用图像分析的“食物日志”系统,它可以自动检测食物图像并估计食物平衡(使用简单的营养模型)。它还允许用户在分析结果包含错误时方便地修改分析结果。到目前为止,系统还没有利用用户的修正来提高分类的性能。在本文中,我们提出了基于贝叶斯网络的增量更新分类器,以便利用用户的修正来改进分析结果。随着算法的不断更新,食品图像检测的准确率从89%提高到92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effective humanoid motion generation based on programming-by-demonstration method for entertainment robotics Research and development of experience learning history acquisition system using mobile terminals An experience of digital cultural assets at museum Capacity of visual short term memory of the Malaysian population in the design of a virtual environment Receiptlog applied to forecast of personal consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1