Convolutional neural network based approach for estimating ionospheric delay from GNSS observables

M. Saajasto, M. Mäkelä, F. Prol, M. Z. H. Bhuiyan, S. Kaasalainen
{"title":"Convolutional neural network based approach for estimating ionospheric delay from GNSS observables","authors":"M. Saajasto, M. Mäkelä, F. Prol, M. Z. H. Bhuiyan, S. Kaasalainen","doi":"10.1109/ICL-GNSS57829.2023.10148920","DOIUrl":null,"url":null,"abstract":"With our increasing reliance on GNSS-based services for Position, Navigation, and Time (PNT), the end users require higher level corrections, for example on ionospheric delay, for more accurate positioning and navigation applications. The accuracy of the PNT services can be improved by applying correction parameters, or by utilising post-processing. In this paper we introduce a convolutional neural network based solution for estimating the ionospheric delay directly from the GNSS observables measured by the Finnish national reference station network FinnRef. Our model is able to reproduce the general shape of the ionosphere, compared against a global ionospheric map, but the model is overestimating the ionospheric delay derived from the global map. A machine learning model is computationally too heavy to be run at receiver level, however, the ionospheric delay estimates could be broadcast by the monitoring station network to increase situational awareness or as correction parameters for more precise positioning services.","PeriodicalId":414612,"journal":{"name":"2023 International Conference on Localization and GNSS (ICL-GNSS)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS57829.2023.10148920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With our increasing reliance on GNSS-based services for Position, Navigation, and Time (PNT), the end users require higher level corrections, for example on ionospheric delay, for more accurate positioning and navigation applications. The accuracy of the PNT services can be improved by applying correction parameters, or by utilising post-processing. In this paper we introduce a convolutional neural network based solution for estimating the ionospheric delay directly from the GNSS observables measured by the Finnish national reference station network FinnRef. Our model is able to reproduce the general shape of the ionosphere, compared against a global ionospheric map, but the model is overestimating the ionospheric delay derived from the global map. A machine learning model is computationally too heavy to be run at receiver level, however, the ionospheric delay estimates could be broadcast by the monitoring station network to increase situational awareness or as correction parameters for more precise positioning services.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的GNSS观测值电离层时延估计方法
随着我们越来越依赖基于gnss的定位、导航和时间(PNT)服务,最终用户需要更高级别的校正,例如电离层延迟,以获得更准确的定位和导航应用。PNT服务的准确性可以通过应用校正参数或利用后处理来提高。本文介绍了一种基于卷积神经网络的解决方案,用于直接从芬兰国家参考站网络FinnRef测量的GNSS观测数据中估计电离层延迟。与全球电离层图相比,我们的模型能够再现电离层的一般形状,但该模型高估了从全球电离层图中得出的电离层延迟。机器学习模型的计算量太大,无法在接收器层面运行,然而,电离层延迟估计可以由监测站网络广播,以增加态势感知或作为更精确定位服务的校正参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Benchmarking GNSS Algorithms on FPGA using SyDR RNN-Based GNSS Positioning using Satellite Measurement Features and Pseudorange Residuals Deep Learning Based Kalman Filter for GNSS/INS Integration: Neural Network Architecture and Feature Selection Detecting consistent patterns in pseudorange residuals in GNSS timing data Acceptable Margin of Error: Quantifying Location Privacy in BLE Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1