High performance prediction of stock returns with VG-RAM weightless neural networks

Alberto F. de Souza, Fábio Daros Freitas, Andre Gustavo Coelho de Almeida
{"title":"High performance prediction of stock returns with VG-RAM weightless neural networks","authors":"Alberto F. de Souza, Fábio Daros Freitas, Andre Gustavo Coelho de Almeida","doi":"10.1109/WHPCF.2010.5671832","DOIUrl":null,"url":null,"abstract":"This work presents a new weightless neural network-based time series predictor that uses Virtual Generalized Random Access Memory weightless neural network to predict future stock returns. This new predictor was evaluated in predicting future weekly returns of 46 stocks from the Brazilian stock market. Our results showed that Virtual Generalized Random Access Memory weightless neural network predictors can produce predictions of future stock returns with the same error levels and properties of baseline autoregressive neural network predictors, however, running 5,000 times faster.","PeriodicalId":408567,"journal":{"name":"2010 IEEE Workshop on High Performance Computational Finance","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Workshop on High Performance Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHPCF.2010.5671832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This work presents a new weightless neural network-based time series predictor that uses Virtual Generalized Random Access Memory weightless neural network to predict future stock returns. This new predictor was evaluated in predicting future weekly returns of 46 stocks from the Brazilian stock market. Our results showed that Virtual Generalized Random Access Memory weightless neural network predictors can produce predictions of future stock returns with the same error levels and properties of baseline autoregressive neural network predictors, however, running 5,000 times faster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于VG-RAM失重神经网络的股票收益高性能预测
本文提出了一种新的基于无权重神经网络的时间序列预测器,该预测器使用虚拟广义随机存取记忆无权重神经网络来预测未来股票收益。在预测巴西股市46只股票的未来周收益时,对这个新的预测器进行了评估。我们的研究结果表明,虚拟广义随机存取记忆(Virtual Generalized Random Access Memory)无权重神经网络预测器可以产生与基线自回归神经网络预测器相同的误差水平和属性的未来股票收益预测,但运行速度快5000倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Option pricing with the SABR model on the GPU Pricing structured equity products on GPUs Opportunities for shared memory parallelism in financial modeling Accelerating the computation of portfolios of tranched credit derivatives Adding stream processing system flexibility to exploit low-overhead communication systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1