Designing digital video systems: Modeling and scheduling

H. Kenter, C. Passerone, W. Smits, Yosinori Watanabe, A. Sangiovanni-Vincentelli
{"title":"Designing digital video systems: Modeling and scheduling","authors":"H. Kenter, C. Passerone, W. Smits, Yosinori Watanabe, A. Sangiovanni-Vincentelli","doi":"10.1145/301177.301212","DOIUrl":null,"url":null,"abstract":"An advanced Digital Video Broadcasting (DVB) system is used as a design driver for an IF-based real-time design methodology explored in the ESPRIT/OMI COSY project. The design methodology is supported by the Felix VCC environment, provided by a COSY partner Cadence, and tool-set developed for COSY. In this paper, we focus on two key aspects of the design: behavior modeling and code generation. For the behavior modeling, we present the model of computation used to represent the DVB and the technique for expressing this particular model with the more general model of computation supported by the Felix technology. In a companion paper, the architecture selection and communication refinement are described. Once the architecture is selected and a partitioning has been decided, the implementation phase starts. In this phase, for most system designs, a great deal of software has to be written to \"customize\" the programmable components of the architecture. Obtaining an optimized and correct-by-construction software implementation is fundamental in an effective design methodology. Here we focus on a software generation technique which aims to reduce run-time overhead for functions executed on a single CPU, by generating a minimal number of run-time tasks.","PeriodicalId":344739,"journal":{"name":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/301177.301212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

An advanced Digital Video Broadcasting (DVB) system is used as a design driver for an IF-based real-time design methodology explored in the ESPRIT/OMI COSY project. The design methodology is supported by the Felix VCC environment, provided by a COSY partner Cadence, and tool-set developed for COSY. In this paper, we focus on two key aspects of the design: behavior modeling and code generation. For the behavior modeling, we present the model of computation used to represent the DVB and the technique for expressing this particular model with the more general model of computation supported by the Felix technology. In a companion paper, the architecture selection and communication refinement are described. Once the architecture is selected and a partitioning has been decided, the implementation phase starts. In this phase, for most system designs, a great deal of software has to be written to "customize" the programmable components of the architecture. Obtaining an optimized and correct-by-construction software implementation is fundamental in an effective design methodology. Here we focus on a software generation technique which aims to reduce run-time overhead for functions executed on a single CPU, by generating a minimal number of run-time tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计数字视频系统:建模和调度
先进的数字视频广播(DVB)系统被用作ESPRIT/OMI COSY项目中探索的基于if的实时设计方法的设计驱动程序。设计方法由Felix VCC环境(由COSY合作伙伴Cadence提供)和为COSY开发的工具集支持。在本文中,我们关注了设计的两个关键方面:行为建模和代码生成。对于行为建模,我们提出了用于表示DVB的计算模型,以及用Felix技术支持的更通用的计算模型来表达这个特定模型的技术。在另一篇论文中,描述了体系结构的选择和通信的细化。一旦选择了体系结构并确定了分区,实现阶段就开始了。在这个阶段,对于大多数系统设计,必须编写大量软件来“定制”体系结构的可编程组件。在有效的设计方法中,获得优化的和正确的软件实现是基本的。这里我们将重点介绍一种软件生成技术,该技术旨在通过生成最少数量的运行时任务来减少在单个CPU上执行的函数的运行时开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compiling Esterel into sequential code Peer-based multithreaded executable co-specification Timed executable system specification of an ADSL modem using a C++ based design environment: A case study Fast prototyping: a system design flow for fast design, prototyping and efficient IP reuse A hardware-software cosynthesis technique based on heterogeneous multiprocessor scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1