Deterministic compressed-sensing matrix from grassmannian matrix: Application to speech processing

V. Abrol, Pulkit Sharma, S. Budhiraja
{"title":"Deterministic compressed-sensing matrix from grassmannian matrix: Application to speech processing","authors":"V. Abrol, Pulkit Sharma, S. Budhiraja","doi":"10.1109/IADCC.2013.6514392","DOIUrl":null,"url":null,"abstract":"Reconstruction of a signal based on Compressed Sensing (CS) framework relies on the knowledge of the sparse basis & measurement matrix used for sensing. While most of the studies so far focus on the prominent random Gaussian, Bernoulli or Fourier matrices, we have proposed construction of efficient sensing matrix we call Grassgram Matrix using Grassmannian matrices. This work shows how to construct effective deterministic sensing matrices for any known sparse basis which can fulfill incoherence or RIP conditions with high probability. The performance of proposed approach is evaluated for speech signals. Our results shows that these deterministic matrices out performs other popular matrices.","PeriodicalId":325901,"journal":{"name":"2013 3rd IEEE International Advance Computing Conference (IACC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2013.6514392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Reconstruction of a signal based on Compressed Sensing (CS) framework relies on the knowledge of the sparse basis & measurement matrix used for sensing. While most of the studies so far focus on the prominent random Gaussian, Bernoulli or Fourier matrices, we have proposed construction of efficient sensing matrix we call Grassgram Matrix using Grassmannian matrices. This work shows how to construct effective deterministic sensing matrices for any known sparse basis which can fulfill incoherence or RIP conditions with high probability. The performance of proposed approach is evaluated for speech signals. Our results shows that these deterministic matrices out performs other popular matrices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于格拉斯曼矩阵的确定性压缩感知矩阵:在语音处理中的应用
基于压缩感知(CS)框架的信号重构依赖于用于感知的稀疏基和测量矩阵的知识。到目前为止,大多数研究都集中在突出的随机高斯矩阵,伯努利矩阵或傅立叶矩阵上,我们提出了使用格拉斯曼矩阵构建高效的传感矩阵,我们称之为格拉斯曼矩阵。这项工作展示了如何为任何已知的稀疏基构建有效的确定性感知矩阵,该矩阵可以高概率地满足非相干或RIP条件。最后对该方法在语音信号下的性能进行了评价。我们的结果表明,这些确定性矩阵优于其他流行的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A competent design of 2∶1 multiplexer and its application in 1-bit full adder cell Learning algorithms For intelligent agents based e-learning system Preamble-based timing synchronization for OFDM systems An efficient Self-organizing map learning algorithm with winning frequency of neurons for clustering application Comparison of present-day networking and routing protocols on underwater wireless communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1