On-line longitudinal rip detection of conveyor belts based on machine vision

Yanli Yang, Yanfei Zhao, Changyun Miao, Lijuan Wang
{"title":"On-line longitudinal rip detection of conveyor belts based on machine vision","authors":"Yanli Yang, Yanfei Zhao, Changyun Miao, Lijuan Wang","doi":"10.1109/SIPROCESS.2016.7888275","DOIUrl":null,"url":null,"abstract":"Longitudinal rip of conveyor belts is a serious threat to safety production. Based on the machine vision technology, an algorithm used to find longitudinal rip of belts on-line from gray belt images directly is proposed. A gray image is first translated into a unidimensional vector. The unidimensional vector is further analyzed to obtain rip eigenfunctions. Then, faults of longitudinal rips are diagnosed by using the rip eigenfunction. The calculation of searching from the unidimensional vector is smaller than searching from the gray image. The validity of the proposed algorithm is testified by the testing results with some belt images.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Longitudinal rip of conveyor belts is a serious threat to safety production. Based on the machine vision technology, an algorithm used to find longitudinal rip of belts on-line from gray belt images directly is proposed. A gray image is first translated into a unidimensional vector. The unidimensional vector is further analyzed to obtain rip eigenfunctions. Then, faults of longitudinal rips are diagnosed by using the rip eigenfunction. The calculation of searching from the unidimensional vector is smaller than searching from the gray image. The validity of the proposed algorithm is testified by the testing results with some belt images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器视觉的传送带纵向撕裂在线检测
输送带纵裂严重威胁着安全生产。基于机器视觉技术,提出了一种直接从灰带图像中在线查找皮带纵向撕裂的算法。灰度图像首先被转换成一维矢量。进一步分析一维向量,得到撕裂特征函数。然后,利用断裂特征函数对纵向断裂进行故障诊断。从一维矢量中搜索的计算量比从灰度图像中搜索的计算量小。通过对部分带图像的测试,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SIFT matching method based on K nearest neighbor support feature points Towards robust ego-centric hand gesture analysis for robot control Walking patterns of knee and ankle joints during level walking and uphill walking Vision-based autonomous detection of lane and pedestrians Analyses of signal characteristics of highly-maneuvering platform SAR and time-domain imaging method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1