Multi-factorial predictive modelling of drug addiction for large urban areas

S. Mityagin, S. Ivanov, A. Boukhanovsky
{"title":"Multi-factorial predictive modelling of drug addiction for large urban areas","authors":"S. Mityagin, S. Ivanov, A. Boukhanovsky","doi":"10.1109/ICAICT.2014.7035978","DOIUrl":null,"url":null,"abstract":"The modelling of the society of drug addicts in order to predict the amount of drug users in the large urban areas, including age and sex structure is considered. The model parameters are estimated on the basis of the economic and psychological state of society in the specific area. The simulation framework for analysing social groups deals with the relation of drug abuse to dependence for individuals falling into certain groups. External factors of the region's development are considered as governing variables in the model. Some model results for StPetersburg (Russia) are shown. Monitoring of the drug situation is carried out using an automated information system based on Java2EE technologies and an inter-department database developed in Oracle 11g. A mathematical model for the forecasting of the drug situation is implemented using SAS/EVIL language and SAS libraries for matrix and statistical calculations.","PeriodicalId":103329,"journal":{"name":"2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICT.2014.7035978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The modelling of the society of drug addicts in order to predict the amount of drug users in the large urban areas, including age and sex structure is considered. The model parameters are estimated on the basis of the economic and psychological state of society in the specific area. The simulation framework for analysing social groups deals with the relation of drug abuse to dependence for individuals falling into certain groups. External factors of the region's development are considered as governing variables in the model. Some model results for StPetersburg (Russia) are shown. Monitoring of the drug situation is carried out using an automated information system based on Java2EE technologies and an inter-department database developed in Oracle 11g. A mathematical model for the forecasting of the drug situation is implemented using SAS/EVIL language and SAS libraries for matrix and statistical calculations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大城市吸毒成瘾的多因素预测模型
为了预测大城市吸毒者的数量,包括年龄和性别结构,考虑了吸毒成瘾者社会的建模。模型参数是根据特定地区的社会经济和心理状态来估计的。分析社会群体的模拟框架处理落入某些群体的个人滥用药物与依赖之间的关系。该模型将区域发展的外部因素视为控制变量。给出了俄罗斯圣彼得堡的一些模型结果。使用基于Java2EE技术的自动化信息系统和Oracle 11g开发的跨部门数据库对药品情况进行监测。采用SAS/EVIL语言,利用SAS库进行矩阵计算和统计计算,建立了药品形势预测的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new robust binary image embedding algorithm in discrete wavelet domain Polyalphabetic Euclidean ciphers Complex system state generalized presentation based on concepts Using a knowledge base in developing modification for MS Dynamics AX TOFI technology capabilities for data processing and visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1